波多野结衣毛片-乳色吐息在线观看-国产伦子伦对白视频-性做久久久-狠狠干2019-黄色裸体片-美女无遮挡免费网站-国产91熟女高潮一区二区-懂色av蜜臀av粉嫩av分享-小h片在线观看-台湾佬在线-日韩激情在线播放-欧日韩不卡在线视频-波多野结衣中文字幕一区-天天操夜夜草

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當前位置: 首頁 > 行業資訊 > Could coffee be the secret to fighting obesity?

Could coffee be the secret to fighting obesity?

 

Date:

June 24, 2019

Source:

University of Nottingham

Summary:

Scientists have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

Scientists from the University of Nottingham have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

 

The pioneering study, published today in the journal Scientific Reports, is one of the first to be carried out in humans to find components which could have a direct effect on 'brown fat' functions, an important part of the human body which plays a key role in how quickly we can burn calories as energy.

 

Brown adipose tissue (BAT), also known as brown fat, is one of two types of fat found in humans and other mammals. Initially only attributed to babies and hibernating mammals, it was discovered in recent years that adults can have brown fat too. Its main function is to generate body heat by burning calories (opposed to white fat, which is a result of storing excess calories).

 

People with a lower body mass index (BMI) therefore have a higher amount of brown fat.

 

Professor Michael Symonds, from the School of Medicine at the University of Nottingham who co-directed the study said: "Brown fat works in a different way to other fat in your body and produces heat by burning sugar and fat, often in response to cold. Increasing its activity improves blood sugar control as well as improving blood lipid levels and the extra calories burnt help with weight loss. However, until now, no one has found an acceptable way to stimulate its activity in humans.

 

"This is the first study in humans to show that something like a cup of coffee can have a direct effect on our brown fat functions. The potential implications of our results are pretty big, as obesity is a major health concern for society and we also have a growing diabetes epidemic and brown fat could potentially be part of the solution in tackling them."

 

The team started with a series of stem cell studies to see if caffeine would stimulate brown fat. Once they had found the right dose, they then moved on to humans to see if the results were similar.

 

The team used a thermal imaging technique, which they'd previously pioneered, to trace the body's brown fat reserves. The non-invasive technique helps the team to locate brown fat and assess its capacity to produce heat.

 

"From our previous work, we knew that brown fat is mainly located in the neck region, so we were able to image someone straight after they had a drink to see if the brown fat got hotter," said Professor Symonds.

 

"The results were positive and we now need to ascertain that caffeine as one of the ingredients in the coffee is acting as the stimulus or if there's another component helping with the activation of brown fat. We are currently looking at caffeine supplements to test whether the effect is similar.

 

Once we have confirmed which component is responsible for this, it could potentially be used as part of a weight management regime or as part of glucose regulation programme to help prevent diabetes."

 

Story Source:

 

Materials provided by University of Nottingham. Note: Content may be edited for style and length.

 

Journal Reference:

 

Ksenija Velickovic, Declan Wayne, Hilda Anaid Lugo Leija, Ian Bloor, David E. Morris, James Law, Helen Budge, Harold Sacks, Michael E. Symonds, Virginie Sottile. Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Scientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-019-45540-1

 

 

 

Mitochondrial Homeostasis and Cellular Senescence

Panagiotis V.S. Vasileiou 1, Konstantinos Evangelou 1, Konstantinos Vlasis 2, Georgios Fildisis 3, Mihalis I. Panayiotidis 4OrcID, Efstathios Chronopoulos 5, Panagiotis-Georgios Passias 1, Mirsini Kouloukoussa 1, Vassilis G. Gorgoulis 1,6,7,8 and Sophia Havaki 1,*

1

Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

2

Department of Anatomy, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

3

Nursing School, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str., 11527 Athens, Greece

4

Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST Newcastle, UK

5

Second Department of Orthopaedics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

6

Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester MP13 9PL, UK

7

Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527 Athens, Greece

8

Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

*

Author to whom correspondence should be addressed.

Received: 15 June 2019 / Accepted: 5 July 2019 / Published: 6 July 2019

Abstract: Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.

Keywords: cellular senescence; mitochondria; mitostasis; mitochondrial dynamics

1. Introduction

Cellular senescence is part of a range of cell responses towards extrinsic and/or intrinsic noxious insults that challenge homeostasis, mainly genome and proteome integrity (Figure 1) [1]. The senescent cell is a stressed or damaged, yet viable, cell that has entered a non-proliferative state while still remaining metabolically active. Historically, the first condition described leading to senescence was exhaustion of replication potential due to serial passaging leading to telomere attrition [2]. Below a critical length of telomere, a deoxyribonucleic acid (DNA) damage response is triggered imposing a type of senescence termed replicative senescence (RS). Except for telomere attrition, a wide range of other telomere-independent stimuli, such as oxidative stress, activated oncogenes (termed oncogene induced senescence/OIS), irradiation, genotoxic drugs, cell–cell fusion, epigenetic modifiers, or perturbed proteostasis, have been recognized as powerful inducers of cell senescence. Senescence can also be induced by failure to repair DNA damage [1,3,4]. Senescence imposed by telomere-independent stimuli is more acute and is known as stress induced premature senescence (SIPS) [4,5,6,7,8]. Mechanistically, several molecular pathways have been implicated that often depend on the nature of the initiating event and/or cell type [9,10]. Two best studied molecular axes involve p53/p21WAF1 and Rb-p16INK4A that can also reinforce senescence via a ROS-dependent positive feedback mechanism [5,11,12]. Notably, the p53/p21WAF1 pathway has been suggested to initiate the senescence response, followed by the action of p16INK4A to maintain this condition [13].

Cells 08 00686 g001 550 Figure 1. Maintaining homeostasis is the cornerstone for cells’ normal function, ensuring organismal physiology. Intriguingly, cells are constantly exposed to intrinsic and extrinsic stressors that jeopardize cellular integrity and activate a variety of response modules, through complex and highly sophisticated biochemical networks. Depending on the intensity and duration of the stressor, cellular response mechanisms either manage to neutralize the adverse effects of stress, thus achieving complete recovery and survival, or lead to death in case of non-repairable damage. Between these two opposite outcomes reminiscent of the swinging of a pendulum, cellular senescence enters the scene.

A variety of cellular and molecular hallmarks of senescence have been so far identified, including resistance to apoptosis, morphological and structural features, epigenetic alterations, chromatin rearrangement, and a modified transcriptome program [9,14]. Indeed, senescent cells are known for their increased secreting activity [5]. Particularly, they carry out a complex pro-inflammatory response known as senescence-associated secretory phenotype (SASP), which is mediated by the transcription nuclear factor-κB (NF-κB) and includes the secretion of a spectrum of pro-inflammatory factors, such as interleukins, chemokines, growth factors, proteases, cell surface molecules, and extracellular matrix degrading proteins, that influence the surrounding microenvironment. Respectively, the constituents of SASP act in an autocrine and paracrine manner contributing in various developmental programs or pathophysiological conditions [4,5,6,9,15,16]. Closely related with SASP, senescent cells also exhibit apparent alterations of cellular metabolism, corresponding to abnormalities in morphology, mass, and functionality of their organelles [17].

At this point, and by virtue of their central bioenergetic role and their involvement in other physiological processes such as redox signaling, mitochondria enter the scene as potential key players during cellular senescence [18,19]. Cumulative data support this notion. Mitochondrial oxidative phosphorylation (OXPHOS) deterioration has been reported to be primarily involved in the early stages of cellular senescence, using diverse cellular senescence models [20,21,22,23,24,25]. Senescent cells are characterized by increased production of reactive oxygen species (ROS), mainly attributed to dysfunctional mitochondria [26]. Indeed, in already senescent cells, mitochondrial ROS can aggravate cellular senescence by enhancing the DNA damage and the DNA damage response signaling pathway (DDR) [11]. Noteworthy, mitochondrial deoxyribonucleic acid (mtDNA) is highly vulnerable to ROS due to proximity to the generation site, whilst damaged mtDNA in turn, impairs OXPHOS function, thus further enhancing ROS release [17]. Furthermore, senescent cells exert massive metabolic changes related to mitochondrial metabolites [e.g., oxidized to reduced form of nicotinamide adenine dinucleotide ratios (NAD+/NADH) or tricarboxylic acid (TCA) cycle metabolites], and dynamics (namely fusion, fission and mitophagy) [18,19]. Additionally, mitochondrial biogenesis is up-regulated during senescence [11,27]. Notably, despite the increased mitochondrial pool, the overall adenosine triphosphate (ATP) production by oxidative phosphorylation is reduced during senescence [28]. Furthermore, mitochondria of senescent cells show decreased membrane potential, accelerated ROS production and are prone to leakage of mitochondrial enzymes [29,30].

Not only is mitochondrial dysfunction an epiphenomenon of senescence, but also dysfunctional mitochondria can indeed drive the senescent phenotype. Perturbation of mitochondrial homeostasis promotes the establishment and maintenance of cellular senescence through various mechanisms including excessive mitochondrial ROS production, imbalanced mitochondrial dynamics, electron transport chain defect, bioenergetics imbalance and increased 5’ adenosine monophosphate-activated protein kinase (AMPK) activity, altered mitochondrial metabolite profile (e.g., NAD+), and dysregulated mitochondrial calcium homeostasis [31]. These mitochondrial signals trigger p53/p21WAF1 and/or Rb-p16INK4A pathways, ultimately leading to cellular senescence and stabilizing cell-cycle arrest [11,31,32,33,34]. A number of studies indicate that mitochondrial-derived ROS can accelerate telomere shortening, thus causing premature senescence [29], triggering paracrine senescence [35], or inducing and maintaining senescence through sustained DNA damage response [11,29,36]. Strikingly, clearance of mitochondria negatively impacts the development of many senescence-associated features, including the SASP, while maintaining cell-cycle arrest [37]. Recently, the induction of mitochondrial dysfunction was reported to generate a distinct (i.e., mainly in terms of SASP) type of senescence termed mitochondrial dysfunction-associated senescence (MiDAS) [38].

Apparently, a growing body of evidence underscores a bidirectional link between cellular senescence and these multifaceted organelles. This interplay seems to be best described as a vicious circle, involving a number of feedback loops between the players, rather than a linear cause and effect relationship [19]. Notably, the implication of mitochondria in the context of cellular senescence extends far beyond their contribution in ROS production and oxidative stress. In view of recent outstanding findings regarding the role of mitochondria in cellular senescence, herein we sought to present an overview of mitochondrial homeostatic mechanisms along with evidence implicating mitostasis aberrations in cellular senescence or vice versa.

2. Mitostasis: An Overview of the Mitochondrial Genome and Proteome Maintenance Mechanisms

Mitostasis is a term used to encompass all the mechanisms implicated in the maintenance of normal mitochondrial function. It refers both to genome and proteome integrity of mitochondrion.

2.1. Mitochondrial Genome Maintenance Mechanisms

Mammalian mitochondria biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial [39].

Mammalian mtDNA is a small, adenine/thymine-rich, circular molecule consisting of 16,569-base pairs [40]. Its small size confers two benefits: it enhances rapidity and facilitates accuracy of replication [41]. MtDNA contains 37 genes coding for 2 ribosomal nucleic acids, 22 transfer RNAs, and 13 essential protein subunits of the oxidative phosphorylation system. Each organelle contains two to five copies of mtDNA, therefore each cell has thousands (approximately 1000–l0,000) apparently identical copies of mtDNA [42]. Despite its small size and due to its polyploid nature, mtDNA can represent approximately 1% of the total DNA in some cells [43].

The replication of mtDNA is not limited to the S phase, but occurs throughout the cell cycle. Of interest, two modes of mtDNA replication operate in mammalian; the initially described, “orthodox”, strand-asymmetric mechanism [44], and the unidirectional, synchronous leading- and lagging-strand replication cells [45].

A number of surprising features characterizing the mitochondrial genome have come to light, such as dense gene packing, low methylation levels, relaxed codon usage, and a variant genetic code [40,46,47]. In mammalian mtDNA, the addition of a third DNA strand (0.5 kb), termed “7S DNA”, forms the displacement-loop (d-loop), a short triple-stranded, non-coding, regulatory region of mtDNA responsible for transcription and replication initiation by the mitochondria-specific polymerase-γ (pol γ) [48,49]. In addition, d-loop has been implicated in protein recruitment, mtDNA organization and metabolism, as well as dNTP pools maintenance throughout the cell cycle [50,51,52]. Importantly, many but not all molecules of mtDNA bear this third strand of DNA. In fact, the abundance of 7S-DNA varies greatly between species and cell type, being present on 1–65% of mtDNA molecules [53,54]. Strikingly, other molecules contain RNA as the third strand. The RNA of these R-loops is similar in length and location to the d-loop and is complementary to 7S DNA. Of clinical relevance, in cells with a pathological variant of ribonuclease H1 (an enzyme that degrades RNA hybridized to DNA) associated with mitochondrial disease, R-loop numbers are low and there is mitochondrial DNA aggregation, strongly suggesting a role for the R-loop in mtDNA organization and segregation [55].

MtDNA is packaged into protein–DNA complexes called nucleoids [56,57]. The main DNA packaging protein of nucleoids is the mitochondrial transcription factor A (TFAM), a member of the high-mobility group (HMG) of proteins [58,59]. Other factors exerting central role in the maintenance of the mitochondrial genome’s integrity are the nuclear respiratory factors 1 and 2 (NRF 1/2), which are implicated in the transcriptional control of mtDNA, the peroxisome proliferator-activated receptor gamma co-activator one alpha (PGC1α), which stimulates mitochondrial biogenesis in the basis of cellular energy metabolism regulation, as well as sirtuins (SIRT) [60,61,62]. Mitochondrial sirtuins—SIRT3, SIRT4, and SIRT5—are NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their enzymatic activity is indirectly (through NAD+) linked to the metabolic state of the cell. Importantly, they also regulate non-metabolic aspects of mitochondrial biology, thus ensuring that mitochondrial homeostasis is achieved during stress conditions [63].

The main polymerase functioning within mitochondria is polymerase γ (Pol γ), a heterotrimer comprised of one pol γ catalytic subunit (p140), which exerts a DNA polymerase activity, a 3-5 exonuclease activity and a 5-deoxyribose lyase activity, and two accessory subunits (p55). Contrary to the high nucleotide selectivity and exonucleolytic proofreading of the isolated pol γ catalytic subunit, p55 dimeric exerts reduced fidelity of DNA replication by promoting extension of mismatched DNA termini [64]. Importantly, the general notion that pol γ is uniquely responsible for replication and repair of mitochondrial DNA, has been recently challenged, since several polymerases are now proposed to be present within these organelles [65]. For example, it has been demonstrated that Polβ is involved in mtDNA maintenance. At least in some tissues, Polβ interacts with nucleoid proteins such as TWINKLE helicase, mitochondrial single-strand DNA-binding protein 1 (SSBP1 or mtSSB), and TFAM, thus contributing to mtDNA repair machinery [66]. Another example of such a player is PrimPol, a polymerase which also acts as a primase, having roles in both nuclear and mitochondrial DNA maintenance. PrimPol identified in human mitochondria exerts de novo DNA synthesis capability and oxidative lesions tolerance. Moreover, it seems to play additional roles in the repair of damaged DNA in the absence of ongoing replication [67,68]. Nevertheless, the exact role of all polymerases identified within mitochondria is not yet clear [65].

The integrity of mtDNA, which is crucial for mitostasis, is maintained by multiple DNA repair pathways and through the selective degradation of irreparable or heavily damaged DNA. Indeed, stability of the mitochondrial genome is fulfilled through a 3-level defense system, including (a) the architectural organization of mtDNA, (b) DNA repair mechanisms that are activated within mitochondria when mtDNA damage occurs, and (c) the cleavage of damaged mtDNA through mitochondrial dynamic processes [69]. Importantly, our knowledge regarding DNA repair pathways operating within these multifaceted organelles has been expanding during the last decades, from the inceptive belief of no available repair mechanisms, through the subsequent identification of a limited repair repertoire, to the recent and constantly evolving awareness of a sufficient and vigorous “arsenal” against mitochondrial genome damage [70]. Except for the direct reversal (DR) of certain lesions and short-patch base excision repair (BER) [71,72,73], mitochondria also exert long-patch BER activity and translesion synthesis (TLS) capacity for the repair of single-strand breaks, as well as homology recombination (HR), non-homologous (NHEJ) and microhomology-mediated end-joining (MMEJ) activities for the repair of double-strand lesions [67,74,75,76,77,78,79,80]. Additionally, a novel mismatch repair (MMR) pathway, distinctive from the nuclear one, has been shown to be also present within mitochondria [81,82]. However, the level of proficiency of each one of these repair mechanisms, regarding their intra-mitochondrial functionality, has not been fully elucidated and remains to be further studied in order to characterize key players and regulators involved, both in vitro and in vivo. Collectively, with the exception of nucleotide excision repair (NER) and Fanconi anemia (FA) pathways which have not yet been identified within mitochondria, it appears that a broad range of DNA repair mechanisms that operate in the nucleus contribute also to the integrity of the mitochondrial genome. To date, the only hint regarding the NER pathway in the mitochondria is the localization of the transcription-coupled NER proteins CSA and CSB (Cockayne syndrome proteins) to mitochondria upon oxidative stress [83]. Interestingly, recent evidence supports that multiple proteins in the FA pathway are involved in the suppression of inflammasome activation by decreasing mitochondrial ROS production, and are required for mitophagy (clearance of damaged mitochondria) through interaction of FANCC (Fanconi anemia complementation group C) protein with Parkin, thus contributing to mitochondrial and cell homeostasis [84].

2.2. Mitochondrial Proteome Maintenance Mechanisms

A wide range of proteins are involved in the organization, regulation and replication of the mitochondrial genome and the assembly of these multifaceted organelles.

Proteomic studies, driven by large-scale approaches, including in-depth protein mass spectrometry, microscopical, computational and integrative machine learning methods, revealed that mitochondria contain approximately 1000 (in yeast) to 1500 (in humans) different proteins [85,86,87]. From a functional perspective, mitochondrial and mitochondrial-associated proteins are mainly distributed/classified in those involved in energy metabolism (15%), protein synthesis, transport, folding and turnover functions (23%), and genome maintenance and transcription (12%) [88]. Other mitochondrial functions, including structural, signaling and redox processes, transport of metabolites, as well as iron, amino-acid and lipid metabolism, occupy the remaining 30% of the mitochondrial protein armament. Of note, for more than 19% of mitochondrial proteins, no reliable information on their function is available [85,89].

Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes [90]. Only 13 (about 1%) from the total number of peptides that compose the mitochondrial proteome are encoded by the mitochondrial DNA and synthesized in the mitochondrial matrix, while the remaining 99% of the mitochondrial proteins are encoded by nuclear genes [85]. Thus, the larger part of the mitochondrial proteins needs to travel in an unfolded state from the cytosol into the mitochondrion [86,91,92]. Trafficking and import of mitochondrial precursor proteins (pre-proteins) is mainly mediated by two mitochondrial translocases, namely the Translocase of the Outer Membrane (TOM) and the Translocase of the Inner Membrane (TIM) complexes [93,94]. Importantly, it has become clear that aberrant routes bypassing the preprotein translocases pathways also exist. In this regard, four principal pathways that direct proteins to their intramitochondrial destination have been so far recognized: the presequence pathway to the matrix and inner membrane, the carrier protein pathway to the inner membrane, the redox-regulated import pathway into the intermembrane space, and the β-barrel pathway into the outer membrane [90].

Proper assembly and quality control of mitochondrial proteins is further monitored and executed by a group of molecular chaperones (also known as “heat shock proteins”) which function in collaboration with a group of proteolytic enzymes (proteases) [94,95,96]. In fact, mitochondria possess their own group of chaperones and proteases stationed in the four compartments of the organelle (i.e., the outer membrane, the intermembrane space, the inner membrane and the matrix) [97,98,99]. These compartment-specific chaperones perform multiple functions important for mitochondria biogenesis and maintenance [100,101]. First, they are essential constituents of the mitochondrial protein import machinery, thus enabling transmembrane trafficking of these macromolecules [102]. Second, molecular chaperones are responsible for proper folding of nascent polypeptides and have a role in intra-mitochondrial protein synthesis [95,103,104]. Third, they protect mitochondrial proteins against denaturation and are actively involved in disaggregation and refolding/remodeling of protein aggregates formed under stress conditions [95]. Of note, an additional specific task for mitochondrial chaperones is their involvement in the maintenance and replication of mitochondrial DNA [105]. The two most dynamic networks of mitochondria chaperones are the mt-Hsp70 (an Hsp70 family member) and the multimeric Hsp60-Hsp10 machineries [90]. The former assists translocation of preproteins across both the outer and inner mitochondrial membranes via an ATP-dependent process, whereas the latter is required for the folding of new protein precursors [106,107]. Chaperone Hsp78 (a member of the ClpB/Hsp104 family) is also implicated in mitostasis, fulfilling an essential role for the respiratory chain reaction and the mitochondrial genome’s integrity under severe stress [108]. In particular, Hsp78 in cooperation with co-chaperones (e.g., Hsp70) drives restoration of the original mitochondrial network/morphology or the translation and synthesis of mitochondrial DNA, upon heat shock [104,109]. Another molecular chaperone identified to be localized in the mitochondrial matrix is TRAP1 (tumor necrosis factor receptor-associated protein 1), a Hsp90-like chaperone, which is a critical regulator of a variety of physiological functions, including cell proliferation, differentiation, and survival [110,111]. Among other tasks, TRAP1 regulates the metabolic shift between oxidative phosphorylation to aerobic glycolysis (a hallmark of cancerous cells’ metabolism, called “Warburg Effect”) [112]. Interestingly, TRAP1 expression is up-regulated in mitochondria of various tumor cells, but is down-regulated in mitochondria of corresponding normal tissues [113]. Furthermore, TRAP1 prevents cell death induced by ROS accumulation or mitochondrial permeability transition pore opening [114,115,116].

The mitochondrial protein quality control surveillance mechanism is further supported by a complex network of mitochondrial proteases, which monitor all four mitochondrial compartments against deleterious accumulation of misfolded, misassembled or unfolded proteins [97]. Among a plethora of enzymes, this group of localized proteases includes: a) the ATP-dependent proteases, namely, the LON protease, the Clp Protease Proteolytic subunit (CLPP) and the presequence protease (PITRM1), located in the matrix, b) the mitochondrial AAA (ATPases Associated with diverse cellular Activities) and PARL (Presenilins-associated rhomboid-like protein) proteases of the inner mitochondrial membrane; and c) the two ATP independent proteases, the ATP23 and HTRA2, and the mitochondrial oligopeptidase M (MEP) which reside in the intermembrane space [94,97,117,118]. Collectively, human mitodegradome consists of at least 25 exclusively mitochondrial components that can be grouped into three different catalytic classes: (a) 2 Cys proteases, (b) 15 metalloproteases and (c) 8 Ser proteases [117]. Depending on their function, location as well as structural and proteolytic characteristics, mitochondrial proteases (mitoproteases) can be divided into two groups. The first group is formed by 20 “intrinsic mitoproteases”, the functional activity of which is mostly performed in the mitochondrion; the second group includes five catalytically deficient but functionally proficient mitochondrial proteins, termed “pseudo-mitoproteases”. Even though these pseudo-mitoproteases lack some key residues for catalysis, they exert a regulatory effect on homologous proteases. A discrete group comprising at least 20 proteases are transiently translocated to mitochondria to perform additional proteolytic activities (mainly related to apoptosis or autophagy), under certain circumstances (i.e., in response to excessive stress) [117]. Importantly, the role of mitoproteases in mitochondrial homeostasis extends far beyond their basic function as proteolytic and degradative enzymes. By ensuring proper protein import, maturation and processing, influencing the half-lives of key regulatory proteins, and activating/deactivating proteins essential for core mitochondrial activities in a highly specific and regulated manner, mitoproteases have been recognized as key regulators of mitochondrial gene expression, mitochondrial biogenesis and dynamics, mitophagy and apoptosis. Furthermore, new evidence highlights the impact of impaired or dysregulated function of mitochondrial proteases in the control of ageing and longevity [119,120,121,122,123,124].

Recently, an additional role for the cytosol-localized ubiquitin-proteasome system (UPS), a key component of the cellular proteostasis network (PN), has begun to emerge regarding mitostasis. Particularly, UPS has been implicated in protein quality control of the mitochondrial outer membrane or protein import into the organelle [125,126,127]. Despite the fact that no specific mitoproteases have been identified so far at the outer mitochondrial membrane, a number of ubiquitin ligases have been found to reside to the cytosolic side of this compartment, including the mitochondrial ubiquitin ligase MITOL [also known as membrane-associated ring finger 5 (MARCH-V)], the mitochondrial E3 ubiquitin protein ligase 1 (MULAN), and the mitochondrial distribution and morphology protein 30 (Mdm30) [128]. Of note, UPS is also involved in mitochondrial fusion and fission [94,129,130,131,132,133,134]. Since the mitochondrial outer membrane accommodates several proteins involved in mitochondrial morphology and dynamics, and given the crucial role of mitochondrial morphology and dynamics for cell cycle progression and/or cell fate, it becomes prevalent how important the protein quality control of this specific mitochondrial compartment is [135,136,137]. Consistent with its contribution in controlling the outer membrane protein quality is the role of UPS in the regulation of the proteome of other mitochondrial compartments, such as the matrix (oligomycin sensitivity-conferring protein/OSCP, component of the mitochondrial membrane ATP synthase), the intramembrane space (endonuclease G), and the inner membrane (Uncoupling Protein-2/UCP2 and Uncoupling Protein-3/UCP3) [138,139,140].

Of great importance, during impaired mitochondrial function and/or instability of the mitochondrial proteome, cells can employ a specific ubiquitin-proteasome mitochondrial stress response known as mitochondrial UPR (UPRmt). This mitochondrial stress response mechanism is characterized by the induction of mitochondrial proteostasis machinery (such as mitochondrial molecular chaperones and proteases) as well as anti-oxidant genes to limit damage due to increased generation of reactive oxygen species [141,142]. UPRmt provides a link between mitochondrial survival pathways and the multitasking UPS [94]. In case of irreversible impairment of mitostasis, UPRmt induces outer mitochondrial membrane-associated degradation and/or mitophagy or even apoptosis [94,97].

2.3. Mitochondrial Dynamics

Another aspect regarding the maintenance of mitochondrial homeostasis is mitochondrial dynamics, a term used to encompass three main events: fusion, fission, and mitophagy (i.e., selective mitochondrial autophagy) [143,144]. Fusion dilutes and rearranges the matrix content of a damaged mitochondrion (e.g., a mitochondrion containing unfolded proteome or mutated DNA) with a healthy one, whereas fission partitions damaged material to daughter organelles, thus functioning as mitochondrial quality control mechanisms. During cell cycle progression, mitochondria typically elongate in the G1/S phase, in order to ensure greater ATP supply required to sustain cell duplication, and fragment in the G2/M phase to be equally divided to daughter cells as well as to partition damaged material to daughter organelles [145,146,147,148]. A tightly controlled balance between fission and fusion events is required to ensure normal mitochondrial and cellular functions. Notably, the relative rates of fusion and fission mainly define mitochondrial architecture. Furthermore, both these processes are closely related to the biochemical and metabolic cell status [145,149,150].

In mammalian cells, mitochondrial fusion is primarily orchestrated by large dynamin-related GTPases termed mitofusin 1 (MFN1) and mitofusin 2 (MFN2), plus optic atrophy protein 1 (OPA1) [151,152]. MFN1 and MFN2 are transmembrane GTPases located in the outer mitochondrial membrane (OMM) and their primary function is to mediate the first step of mitochondrial fusion (fusion of the OMM), whereas OPA1 protein, a third GTPase of the dynamin family, is situated within the intermembrane space tightly associated with the inner mitochondrial membrane (IMM). Its primary function is to mediate fusion of the IMM. In addition, OPA1 has multiple roles, namely in maintaining cristae structure within the mitochondria, in maintaining inner membrane (IM) integrity and IM potential, and in preventing release of cytochrome c from the cristae [153]. The core components of mitochondrial fission (division) machinery are dynamin-related protein 1 (Drp1), mitochondrial fission 1 protein (Fis1), mitochondrial fission factor (Mff), and mitochondrial dynamin proteins of 49 and 51 kDa (MiD49/51) [154]. In addition to these mitochondrial components, the endoplasmic reticulum (ER) and actin cytoskeleton also contribute in mitochondrial division [154]. If the above fails, mitophagy is the next level of defense, ensuring the selective degradation of damaged mitochondria. The best-known pathway mediating mitophagy is the one that depends on the serine/threonine kinase PINK1 (phosphatase and tensin homolog induced putative kinase 1) and Parkin, an E3 ubiquitin ligase [155]. The former localizes to mitochondria while the latter resides in the cytosol. Under normal steady-state conditions, PINK1 undergoes a continuous import and sequential proteolysis cycle. This well-orchestrated process yields very low to undetectable levels of PINK1 on healthy mitochondria. PINK1 is stabilized specifically on the outer membrane of damaged mitochondria (e.g., due to depolarization or blocking mitochondrial import) flagging them for elimination. In particular, it activates Parkin’s E3 ubiquitin ligase activity, and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins and drives mitophagy to completion through a positive feedback-loop [156].

3. Cross-Talks between Impaired Mitostasis and Cellular Senescence

3.1. Impaired Mitochondrial Biogenesis and Cellular Senescence

Inefficient maintenance of the mitochondrial genome’s integrity due to defects/errors in the mtDNA replication machinery and/or failure in the repair of mtDNA damage leads to impaired mitochondrial biogenesis, mitochondrial dysfunction and bioenergetic failure of the cell. Despite the well-documented role of mutated mtDNA as a cause of different types of mitochondrial diseases [157], its impact as a driver of senescence is less investigated. Early studies, based on restriction enzyme analysis of mtDNA in fibroblasts undergoing replicative senescence, excluded the presence of deletions, insertions rearrangements, or single base changes [158]. Nevertheless, it was more recently shown in vitro that mtDNA-depleted cells display senescent phenotypes (resistance to cell death, increased SA-β-gal activity, lipofuscin accumulation), implicating the potential involvement of mtDNA damage in cellular senescence [159]. Indeed, current knowledge supports that all of the five nuclear-derived transcription factors that govern mitochondrial biogenesis, POLγ, PGC-1α, NRF-1/2, sirtuins, and TFAM have been somehow involved in cellular senescence [60].

Particularly, both the mitochondrial mass and the mRNA levels of PGC1α and NRF-1, were found to increase during replicative senescence in vitro [160]. This upregulation was attributed to de novo synthesis of the nuclear transcriptional factors as a compensatory response to increased ROS production and the impaired membrane potential [160]. On the other hand, overexpression of the transcriptional co-activator PGC-1α in human fibroblasts resulted in an increase of the mitochondrial encoded marker protein COX-II, consistent with the ability of PGC-1 to increase mitochondrial number, and accelerated the rate of cellular senescence [161].

In a model of OIS, oncogenic Ras induced multiple regulators of mitochondrial biogenesis, including NRF2a, PGC1α, PGC1β, and TFAM. Strikingly, even though the increased mRNA levels were documented two days after the induction of oncogenic Ras, the expression of these genes was even higher when the cells had established a full senescent state. Of note, newly formed mitochondria in Ras-senescent cells were dysfunctional, with compromised ATP generation and increased ROS, due to the continuous oncogenic stress [162]. At variance with these findings, in mice with dysfunctional telomeres, p53-dependent PGC1α and PGC-1β repression was shown to mediate cellular growth arrest [163,164]. PGC1 down-regulation resulted in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and decreased expression of ROS detoxifying enzymes. Enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration.

In human cells and POLGD257A mutated mice (i.e., a mutation in the proofreading domain of the mtDNA polymerase PolG), mitochondrial compromise due to genotoxic stress, caused by mtDNA depletion or accelerated rate of mtDNA mutations, has been associated with the induction of cellular senescence with a distinct secretory phenotype, one that lacks the IL-1-dependent inflammatory arm [38]. Importantly, elimination of the mitochondrial sirtuins SIRT3 and to a lesser extent SIRT5, but not other sirtuins, drove the senescent phenotype. In addition, while SIRT3 shRNA induced senescence in wild-type (WT) mouse embryonic fibroblasts (MEFs), MEFs from SIRT3 knockout mice did not senesce, thus suggesting that embryonic versus post-development acute loss of SIRT3 can have different effects [38]. Of great importance, mitochondrial dysfunction has been found to upset the balance of NAD+ (the oxidized form of nicotinamide adenine dinucleotide), a coenzyme that, besides its role in redox metabolism and cell signaling, also serves as a co-factor for sirtuins [165]. At the same time, both mitochondrial sirtuins and cytosolic NAD+ depletion have been implicated in the induction of premature senescence-like phenotype [38,166,167,168], therefore further underscoring the possible role of mitochondrial biogenesis impairment in cellular senescence through discoordination of energy metabolism [19].

Furthermore, in accordance with the notion that increased mitochondrial oxidative metabolism is a feature of cellular senescence, recent evidence suggests that the metabolic shift (i.e., increased mitochondrial oxidative metabolism) which characterizes cellular senescence, occurs in parallel with enhanced mitochondrial biogenesis [11,169]. Mechanistically, increased mitochondrial content was found to be regulated through a newly identified pathway, involving mechanistic target of rapamycin (mTOR)-dependent activation of PGC-1β, a key player in mitochondrial biogenesis [37]. It was also demonstrated that the reduction in mitochondrial content, by either mTORC1 inhibition or PGC-1β deletion, prevents senescence and attenuates SASP and ROS-dependent persistence of DDR [37].

Another cornerstone of mitochondrial biogenesis and maintenance of the mitochondrial genome’s integrity is the nuclear-encoded mitochondrial proteins. Notably, nuclear DNA is under the constant threat of oxidative damage due to ROS production, and from this point of view mitochondria seem to have a great impact as major contributors of oxidative stress. Nevertheless, the role of mitochondria extends far beyond the well-established impact of mitochondrial ROS as nuclear DNA damaging factors that activate a DDR and induce senescence [11,162]. Indeed, excessive mtDNA depletion can induce a reprogramming of nuclear gene expression patterns including genes involved in metabolism, stress response and growth signaling, termed “retrograde response” [170]. Dysfunctional mitochondria can actively secrete multiple forms of damage associated molecular patterns (DAMPS)—also known as mitochondrial alarmins—among of which are mtDNA and TFAM (the principal regulator of mtDNA transcription and stabilization). These molecules exit the mitochondrial compartment, enter the cytoplasm or the extracellular space, and bind to pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and NOD-like receptors (NLRs), thus activating the immune system and triggering a significant pro-inflammatory response [171,172]. Among others, cytosolic mtDNA can be recognized by and engage the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway which has been recently identified as a crucial regulator of senescence and the SASP [173]. Of great importance, cytochrome c, which under normal conditions is restricted within the mitochondrial intermembrane space where it functions as an electron carrier in the electron transport chain and as a scavenger of ROS, has also been identified as capable of serving as DAMP [171,172]. Indeed, cytochrome c seems to exert a biphasic role: apoptogenic or immunomodulatory. Upon stimuli, the release of cytochrome c into the cytoplasm is considered to be a critical event to facilitate the inflammation-free process of apoptosis, whereas when translocated extracellularly cytochrome c functions as a mitochondrial DAMP eliciting an inflammatory response [171,172]. Unfortunately, current knowledge regarding the spatiotemporal role of cytochrome c as a DAMP is still in its infancy and more studies are needed to elucidate the underlying molecular mechanisms.

It has also been demonstrated that a functional link between mitochondria and telomeres exists, suggesting a crosstalk between replicative senescence and mitochondria, with mitochondrial biogenesis holding a protagonist role [163]. Briefly, according to the proposed model, telomere-dysfunction-induced p53 represses the PGC network and compromises mitochondrial biogenesis. Specifically, in mice with dysfunctional telomeres, p53-mediated cellular growth arrest becomes activated, in turn repressing PGC-1α and PGC-1β, master regulators of metabolic and mitochondrial processes [163,164]. This results in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and down-regulated expression of ROS detoxifying enzymes. However, enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration. Additionally, it has been proposed that telomerase protects mitochondria against oxidative stress through a telomere length-independent function. In particular, TERT is reversibly excluded from the nucleus upon both acute and chronic oxidative stress conditions, in a dose- and time-dependent manner, exported to the cytosol and colocalizes with/accumulates in mitochondria where it confers multilevel mitochondrial protection: decreases mitochondrial superoxide production and cell peroxide levels, enhances mitochondrial membrane potential, improves mitochondrial coupling, and reduces mtDNA damage, altogether suggesting improvement of the overall mitochondrial function [174]. In accordance, increased endogenous formation of ROS after continuous cultivation of endothelial cells was accompanied by both mitochondrial DNA damage and an export of nuclear TERT protein from the nucleus into the cytoplasm, followed by the onset of replicative senescence. Likewise, antioxidants delayed the onset of replicative senescence by counteracting the increased ROS production and preventing nuclear export of TERT protein [175]. Moreover, TERT overexpression suppressed retrograde response [170], which represents a characteristic feature of replicative senescence [29]. Of note, these finding are in discrepancy with earlier reports according to which ectopically expressed TERT in human fibroblasts under acute oxidative stress resulted in increased mtDNA damage [176,177,178].

Beyond ROS accumulation, mitochondrial dysfunction results in a decline in iron-sulfur cluster biogenesis which can stimulate nuclear genomic instability, which is manifested as a gradual slow of growth rate, a high frequency of cell death, or, surprisingly, cell-cycle arrest in the G1 phase and at a metabolically active status, reminiscing of senescence [179]. This cellular crisis would be expected to drive further decline in mitochondrial function via genotoxic activation of p53 and associated repression of PGC-1 family coactivators. Iron sulfur (Fe/S) clusters serve catalytic and structural functions in many cellular proteins, thus being involved in a wide variety of cellular processes such as enzymatic reactions, respiration, cofactor biosynthesis, ribosome biogenesis, regulation of gene expression, and DNA-RNA metabolism [180]. Noteworthy, in fibroblasts expressing oncogenic Ras, knocking down Rieske iron sulfur protein (RISP) of complex III leads to ROS production, a decrease in ATP synthesis, and activation of the AMPK pathway which triggers a robust senescent phenotype [162].

Another aspect of the involvement of mitochondrial genome instability in cellular senescence is its effect on the stem cell’s pool integrity. In mtDNA mutator mice, age-dependent accumulation of somatic mtDNA mutations has been suggested to affect stem cell homeostasis and eventually accelerates stem cell senescence. Potential mechanisms whereby mtDNA mutagenesis drives senescence in a stem cell population include loss of the mitochondrial membrane potential (MMP), blockage of metabolic shift during differentiation (from glycolysis to OXPHOS), imbalanced fusion and fission events (towards fission), abnormal mitophagy and/or autophagy, as well as ROS production [181].

3.2. Impaired Mitochondrial Dynamics and Cellular Senescence

The potential involvement of deregulated mitochondrial fusion, fission and mitophagy in cellular senescence has been suggested by a number of studies. Generally, in senescent cells, mitochondrial dynamics are considered to be strongly reduced [182]. Highly elongated mitochondria, accompanied with enhanced cristae structure and increased mitochondrial content, have been described during stress-induced premature senescence [23]. In line with this notion, the ultrastructural study of senescent cells of p21-inducible precancerous and cancerous cellular models (Li-Fraumeni and Saos-2 cell lines, respectively) studied previously by our group [183,184], revealed defective enlarged mitochondria in the majority of cells with perturbed morphology of cristae. Specifically, they were distributed mostly at the periphery of mitochondria or shaping circular formations, while in other mitochondria they were partially or totally lost (Figure 2). The above observations indicate dynamic remodeling of cristae responding to the metabolically needs of senescent cells or reflecting respiratory chain deficiency [185].

Cells 08 00686 g002 550 Figure 2. Senescent cell with enlarged mitochondria with disturbed morphology of cristae distributed mostly at their periphery, forming circular constructions, or partially lost. N: nucleus. Scale bar: 1 μm.

Moreover, some of the mitochondria were elongated (Figure 3) or branched (Figure 4) with abnormal distribution or partial loss of cristae indicating disturbance of mitochondrial dynamics.

Cells 08 00686 g003 550 Figure 3. Elongated mitochondria in the cytoplasm of a senescent cell with partial loss of cristae. N: nucleus. Scale bar: 500 nm.

Cells 08 00686 g004 550 Figure 4. Branched mitochondrion in the cytoplasm of a senescent cell with partial loss of cristae. Scale bar: 500 nm.

As previously shown by Lee and colleagues [186], mitochondrial elongation has been associated with down-regulation of Fis1 along with an overall enhancement of fusion activity, as manifested by increased expression ratio(s) of Mfn proteins to fission modulators (Mfn > Drp1 and/or Mfn > Fis1). Direct induction of mitochondrial elongation by blocking the mitochondrial fission process was sufficient to develop a senescent phenotype with increased ROS production, whereas overexpression of Fis1 protein blocked the mitochondrial elongation and partially reversed the senescent phenotype. Remarkably, in case of simultaneous depletion of Fis1 and OPA1 (the critical component of mitochondrial fusion) or sequential depletion of OPA1 followed by Fis1 shRNA transfection, senescent-associated changes were significantly suppressed, and the cell proliferation rate was restored, even though mitochondria remained severely fragmented. This indicates that it is the fusion/fission imbalance that causes sustained mitochondrial elongation and not just the inhibition of mitochondrial fission per se, that triggers senescence-associated changes in Fis1 knockdown cells [186].

The formation of long and interconnected mitochondria in human endothelial cells (HUVECs) cultivated in vitro till they reached replicative senescence was associated with a reduced expression of Drp1 and Fis1 correlated with increased PINK1 mRNA levels [187]. The same mitochondrial architectural configuration is also adopted due to MARCH5 depletion that binds hFis1, Drp1 and Mfn2 [130,131,188]. The loss of MARCH5 facilitates mitochondrial elongation and interconnection either by suppression of Drp1-mediated mitochondrial or a marked increase in the steady-state levels of Mfn1, thus imposing a cellular stress which ultimately triggers cellular senescence [189]. Disruption of mitochondrial dynamics has been implicated in the induction of cellular senescence in human bronchial epithelial cells (HBEC). Mitochondrial fragmentation induced by knockdown of fusion proteins, OPA1 or MFN, was shown to boost mitochondrial ROS production and accelerate cellular senescence in HBEC exposed to cigarette smoke extract [190].

Taken together, in vitro studies show that senescent cells are typically associated with an overall shift toward more fusion events [31]. Whether mitochondrial elongation is causal to or epiphenomenon of cellular senescence has not yet been fully elucidated. Mitochondrial elongation could represent an energy-save attitude or even an adaptation to the impaired mitochondrial biogenesis that characterizes cellular senescence [145,187]. Others suggest that mitochondrial lengthening renders cells more resistant against apoptotic stimuli or autophagic degradation, thus facilitating cell viability [191,192,193,194,195,196]. Of interest, elongated and interconnected mitochondria of senescent endothelial cells exhibit a much higher threshold for stress-induced mitochondrial damage [187]. However, contradictory findings support that, in a longitudinal basis, prolonged elongated mitochondria ultimately result in higher production of intracellular ROS and diminished mitochondrial respiration activity [23].

Time-course analysis showed that mitochondrial population turnover is gradually declined in senescent cells in vitro and in vivo [197,198], as a consequence of reduced basal or induced autophagic activity, or due to lysosomal dysfunction and overload, which eventually overcome mitophagy capability [199]. This may partly explain the increased mitochondrial content of senescent cells [11,37].

It has been demonstrated that defective mitophagy and perinuclear build-up of damaged mitochondria is a critical contributor to the induction of cellular senescence in cigarette smoke extract-treated lung fibroblasts and small airway epithelial cells (SAECs). This is associated with impaired Parkin translocation and an exacerbation of mitochondrial ROS-induced DNA damage foci formation, due to cytoplasmic p53 accumulation [200]. Strikingly, in vitro experiments showed that Parkin overexpression was sufficient to induce mitophagy and repress accelerated cellular senescence in HBEC in response to cigarette smoke exposure, even in the setting of reduced PINK1 protein levels. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, suggesting that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy [201].

From the opposite point of view, cellular senescence directly contributes to dysregulated mitophagy that drives Senescence-Associated Mitochondrial Dysfunction (SAMD) [199]. Of great interest, SAMD is considered to be a major regulator of the senescent phenotype, especially of the SASP, thus contributing to the development and stability of the senescent cell cycle arrest [11,38,202].

Furthermore, the regulation and functional role of mitophagy in cellular senescence appears also to be related to changes in general autophagy, even though things are less clear. By removing damaged macromolecules or organelles, autophagy prevents garbage catastrophe, thus exerting an anti-senescence role. However, on a short-term basis, autophagy facilitates the synthesis of senescence-associated secretory proteins, thus suggesting to be a pro-senescence mechanism [203]. It was demonstrated that autophagy impairment with lysosomal and mitochondrial dysfunction is crucial for oxidative stress-induced cell senescence [27]. On the contrary, targeted mitochondrial damage due to oxidative stress-upregulated autophagy factors LC3B, ATG5 and ATG12, enhanced mitophagy and prevented senescence [204].

4. Future Perspectives

Intriguingly, the onset of the senescent phenotype is not always beneficial. Short-term accumulation of senescent cells has a positive outcome in embryonic development, tissue repair, and cancer prevention. On the other hand, its chronic persistence (chronic senescence) leads to detrimental results, such as aging and age-related pathologies [205]. Respectively, impaired mitochondrial function as well as cellular senescence are both implicated in aging and age-related pathologies such as cancer, neurodegenerative and cardiovascular diseases [206,207]. Except for the mitochondrial free radical theory of aging which highlights the accumulation of mitochondrial oxidative damage (due to progressive mitochondrial dysfunction and increased production of ROS) as the driving force of age-related phenotypes, the current view supports the notion that aging is, among other causes, the result of generalized impaired mitochondrial bioenergetics that cause global cellular damage [119,208]. In addition, cellular senescence has also been recognized as a hallmark of aging; although in young organisms, cellular senescence acts as a failsafe program to prevent the propagation of damaged cells, the deficient clearance of senescent cells in aged tissues results in accumulation of senescent cells which exert deleterious effects and jeopardize tissue homeostasis [208].

This also has therapeutic perspectives. Elimination of senescent cells in a selective manner over normal cells has been proven to prevent or delay tissue dysfunction and to maximize healthy lifespan as exemplified in progeroid animal models [97]. Moreover, a new research field has opened up, where strategies can be designed to reduce the burden of senescent cells in an organism and thus contribute to the treatment of pathological conditions and age-related abnormal conditions. Given that mitochondrial dysfunction—at least partly—drives senescence, targeting mitochondrial dysfunction emerges as a potential therapeutic strategy to counteract the negative impact of chronic senescence. In this regard, resveratrol, a polyphenol which has been shown to exert immunomodulatory, anti-inflammatory and antioxidative effects, with an ability to prolong lifespan and protect against age-related disorders in different animal models, has gained attention as a potential senolytic agent [209]. It has been demonstrated that resveratrol improves mitochondrial function and protects against metabolic disease by inducing PGC-1a and SIRT1 activity [210]. Moreover, it was recently reported the role for mitochondria in specific elimination of senescent cells using mitochondria-targeted tamoxifen (MitoTam), based on the capacity of non-proliferating non-cancerous cells to withstand oxidative insult induced by OXPHOS inhibition [211].

SASP action is considered to be the major modulating factor of the bimodal behavior that senescent cells exert. Therefore, mitochondrial-targeted interventions for selective inhibition of the SASP components can elicit anti-senescent effects. As previously mentioned, senescent cells exhibit impaired mitochondrial biogenesis and metabolic shifts, namely a decrease in NAD+ and an increase in AMP and ADP. These changes have been shown to contribute to both the senescent cell cycle arrest as well as the regulation of the SASP via multiple signaling pathways. The core idea is that mitochondrial ablation upon induction of senescence, selectively inhibits common pro-inflammatory and pro-oxidant aspects of the senescent phenotype, while preserving the cell cycle arrest, which in specific context (e.g., late stage of tumorigenesis) is desirable. In this regard, possible mechanisms whereby mitochondria that have abolished normal function are implicated in SASP regulation include: (a) mTOR activation due to sustained DDR which promotes PGC1-β dependent biogenesis of new, yet dysfunctional, mitochondria that further increase ROS production, thus replenishing DDR through a positive feedback-loop, (b) AMPK activation (due to increased AMP/ATP and ADP/ATP ratios) which in turn activates p53 and subsequently stabilizes p16 and p21, thus promoting cell cycle arrest, (c) low NAD+-driven inhibition of poly-ADP ribose polymerases (PARPs) which are dispensable for DNA repair after genotoxic stress, (d) low NAD+-driven inactivation of sirtuins, which normally serve as inhibitors of NF-kB activity and transcriptional repressor of SASP genes, (e) initiation of an innate immune response due to cytosolic exit of damaged mtDNA molecules that exert pro-inflammatory effects [18]. Moreover, recent studies indicate that mTOR inhibition contributes to reduction of the SASP by decreasing translation of the proteins interleukin-1 α (IL-1A) and MAP kinase-activated protein kinase 2 (MAPKAPK2) or via reduction of mitochondrial biogenesis and ROS-dependent persistence of a DDR [37,212,213].

In addition, activation of autophagy by inhibition of mTORC was shown to efficiently suppress senescence phenotypes in a number of studies [27,37,202]. Of great importance, the introduction of senolytic strategies is a relative novel and unexplored field. A high level of caution is needed since new findings are coming into light underscoring possible undesirable side effects. For example, a category of senolytic drugs that function as inhibitors of the anti-apoptotic BCL-2 family proteins has been shown to induce a minor mitochondrial outer membrane permeabilization (miMOMP) due to limited caspase activation, not sufficient to induce apoptosis, yet capable of causing increased DNA damage and genomic instability, even in neighboring non-senescent cells [18,214]. Of clinical relevance, a recently developed chemically modified mitochondria-targeted doxorubicin derivative was shown to be less cardiotoxic and more effective than doxorubicin, against drug-resistant tumor cells overexpressing P-glycoprotein [215]. Even though the role of mitochondria in the various modes of cell death and cell physiology has been well known, their involvement in cellular senescence has only recently started to be elucidated. At the moment, a thorough understanding of the mechanisms governing the bidirectional connection between perturbations in mitochondrial homeostasis and cellular senescence is missing. Novel methodologies for the detection of cellular senescence and new technologies applied to the analysis of mitochondrial biochemistry continue to be developed, thus facilitating our understanding of these multifaceted organelles and elucidating the interplay between mitochondria and cellular senescence [216,217].

Author Contributions

Conceptualization, V.G.G., S.H, P.V.S.V and K.E.; Resources, P.V.S.V., M.K. and S.H.; Writing-Original Draft preparation, P.V.S.V., K.V., G.F., M.I.P., P.G.P., E.C., and M.K.; Writing-Review and Editing, S.H. and K.E.; Supervision, V.G.; Project Administration, V.G.; Funding Acquisition, V.G.

Funding

Financial support was from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grants agreement No. 722729 (SYNTRAIN); the Welfare Foundation for Social & Cultural Sciences (KIKPE), Greece; Pentagon Biotechnology Ltd., UK; DeepMed IO Ltd., UK and NKUA-SARG grants No 70/3/9816, 70/3/12128.

Conflicts of Interest

The authors declare no conflict of interest.

References

Gorgoulis, V.G.; Pefani, D.E.; Pateras, I.S.; Trougakos, I.P. Integrating the DNA damage and protein stress responses during cancer development and treatment. J. Pathol. 2018, 246, 12–40. [Google Scholar] [CrossRef]

Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]

Halazonetis, T.D.; Gorgoulis, V.G.; Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 2008, 319, 1352–1355. [Google Scholar] [CrossRef] [PubMed]

Gorgoulis, V.G.; Halazonetis, T.D. Oncogene-induced senescence: The bright and dark side of the response. Curr. Opin. Cell Biol. 2010, 22, 816–827. [Google Scholar] [CrossRef]

Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496. [Google Scholar] [CrossRef] [PubMed]

Burton, D.G.; Krizhanovsky, V. Physiological and pathological consequences of cellular senescence. Cell. Mol. Life Sci. 2014, 71, 4373–4386. [Google Scholar] [CrossRef] [PubMed]

Georgakopoulou, E.; Evangelou, K.; Havaki, S.; Townsend, P.; Kanavaros, P.; Gorgoulis, V.G. Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow? Mech. Ageing Dev. 2016, 156, 17–24. [Google Scholar] [CrossRef] [PubMed]

Liakou, E.; Mavrogonatou, E.; Pratsinis, H.; Rizou, S.; Evangelou, K.; Panagiotou, P.N.; Karamanos, N.K.; Gorgoulis, V.G.; Kletsas, D. Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: The role of TGF-β. Aging 2016, 8, 1650–1669. [Google Scholar] [CrossRef]

Salama, R.; Sadaie, M.; Hoare, M.; Narita, M. Cellular senescence and its effector programs. Genes 2014, 28, 99–114. [Google Scholar] [CrossRef]

Serrano, M.; Lin, A.W.; McCurrach, M.E.; Beach, D.; Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997, 88, 593–602. [Google Scholar] [CrossRef]

Passos, J.F.; Nelson, G.; Wang, C.; Richter, T.; Simillion, C.; Proctor, C.J.; Miwa, S.; Olijslagers, S.; Hallinan, J.; Wipat, A.; et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 2010, 6, 347. [Google Scholar] [CrossRef] [PubMed]

Takahashi, A.; Ohtani, N.; Yamakoshi, K.; Iida, S.; Tahara, H.; Nakayama, K.; Nakayama, K.I.; Ide, T.; Saya, H.; Hara, E. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 2006, 8, 1291–1297. [Google Scholar] [CrossRef] [PubMed]

Childs, B.G.; Baker, D.J.; Kirkland, J.L.; Campisi, J.; van Deursen, J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014, 15, 1139–1153. [Google Scholar] [CrossRef] [PubMed]

Kuilman, T.; Michaloglou, C.; Mooi, W.J.; Peeper, D.S. The essence of senescence. Genes Dev. 2010, 24, 2463–2479. [Google Scholar] [CrossRef] [PubMed]

Campisi, J.; d’Adda di Fagagna, F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar] [CrossRef] [PubMed]

Rodier, F.; Campisi, J.J. Four faces of cellular senescence. Cell Biol. 2011, 192, 547–556. [Google Scholar] [CrossRef] [PubMed]

Kwon, S.M.; Hong, S.M.; Lee, Y.K.; Min, S.; Yoon, G. Metabolic features and regulation in cell senescence. BMB Rep. 2019, 52, 5–12. [Google Scholar] [CrossRef] [PubMed]

Birch, J.; Passos, J.F. Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies? Bioessays 2017, 39. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Passos, J.F. Mitochondria: Are they causal players in cellular senescence? Biochim. Biophys. Acta 2015, 1847, 1373–1379. [Google Scholar] [CrossRef]

Yoon, G.; Kim, H.J.; Yoon, Y.S.; Cho, H.; Lim, I.K.; Lee, J.H. Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: Association of transforming growth factor beta1 (TGF-beta1)-mediated p27Kip1 expression. Biochem. J. 2002, 366, 613–621. [Google Scholar] [CrossRef]

Yoon, Y.S.; Byun, H.O.; Cho, H.; Kim, B.K.; Yoon, G. Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest. J. Biol. Chem. 2003, 278, 51577–51586. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Kim, M.J.; Yoon, G. PKCdelta phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF-beta1-induced senescence. Free Radic. Res. 2014, 48, 1100–1108. [Google Scholar] [CrossRef] [PubMed]

Yoon, Y.S.; Yoon, D.S.; Lim, I.K.; Yoon, S.H.; Chung, H.Y.; Rojo, M.; Malka, F.; Jou, M.J.; Martinou, J.C.; Yoon, G. Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol. 2006, 209, 468–480. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Seo, Y.H. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) beta1-induced senescence. Exp. Cell Res. 2012, 318, 1808–1819. [Google Scholar] [CrossRef] [PubMed]

Lafargue, A.; Degorre, C.; Corre, I. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic. Biol. Med. 2017, 108, 750–759. [Google Scholar] [CrossRef] [PubMed]

Victorelli, S.; Passos, J.F. Reactive Oxygen Species Detection in Senescent Cells. Methods Mol. Biol. 2019, 1896, 21–29. [Google Scholar] [CrossRef] [PubMed]

Tai, H.; Wang, Z.; Gong, H.; Han, X.; Zhou, J.; Wang, X.; Wei, X.; Ding, Y.; Huang, N.; Qin, J.; et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 2017, 13, 99–113. [Google Scholar] [CrossRef] [PubMed]

Habiballa, L.; Salmonowicz, H.; Passos, J.F. Senescence Mitochondria and cellular senescence: Implications for musculoskeletal ageing. Free Radic. Biol. Med. 2019, 132, 3–10. [Google Scholar] [CrossRef]

Passos, J.F.; Saretzki, G.; Ahmed, S.; Nelson, G.; Richter, T.; Peters, H.; Wappler, I.; Birket, M.J.; Harold, G.; Schaeuble, K.; et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 2007, 5, e110. [Google Scholar] [CrossRef]

Studencka, M.; Schaber, J. Senoptosis: Non-lethal DNA cleavage as a route to deep senescence. Oncotarget 2017, 8, 30656–30671. [Google Scholar] [CrossRef]

Ziegler, D.V.; Wiley, C.D.; Velarde, M.C. Mitochondrial effectors of cellular senescence: Beyond the free radical theory of aging. Aging Cell 2015, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]

Lee, A.C.; Fenster, B.E.; Ito, H.; Takeda, K.; Bae, N.S.; Hirai, T.; Yu, Z.X.; Ferrans, V.J.; Howard, B.H.; Finkel, T. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 1999, 274, 7936–7940. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Berggren, P.; Yu, J.; Lee, S.W.; Aaronson, S.A. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol. 2003, 23, 8576–8585. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Fang, L.; Chen, A.; Pan, Z.Q.; Lee, S.W.; Aaronson, S.A. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J. 2002, 21, 2180–2188. [Google Scholar] [CrossRef] [PubMed]

Nelson, G.; Wordsworth, J.; Wang, C.; Jurk, D.; Lawless, C.; Martin-Ruiz, C.; von Zglinicki, T. A senescent cell bystander effect: Senescence-induced senescence. Aging Cell 2012, 11, 345–349. [Google Scholar] [CrossRef] [PubMed]

Chen, H.; Ruiz, P.D.; McKimpson, W.M.; Novikov, L.; Kitsis, R.N.; Gamble, M.J. MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. Mol. Cell 2015, 59, 719–731. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Marques, F.D.; Anderson, R.; Hewitt, G.; Hewitt, R.; Cole, J.; Carroll, B.M.; Miwa, S.; Birch, J.; Merz, A.; et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016, 724, 42. [Google Scholar] [CrossRef] [PubMed]

Wiley, C.D.; Velarde, M.C.; Lecot, P.; Liu, S.; Sarnoski, E.A.; Freund, A.; Shirakawa, K.; Lim, H.W.; Davis, S.S.; Ramanathan, A.; et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2016, 23, 303–314. [Google Scholar] [CrossRef] [PubMed]

Garesse, R.; Vallejo, C.G. Animal mitochondrial biogenesis and function: A regulatory cross-talk between two genomes. Gene 2001, 263, 1–16. [Google Scholar] [CrossRef]

Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]

Alexeyev, M.; Shokolenko, I.; Wilson, G.; Ledoux, S. The maintenance of mitochondrial DNA integrity-Critical analysis and update. Cold Spring Harb. Perspect. Biol. 2013, 5, a012641. [Google Scholar] [CrossRef] [PubMed]

Bogenhagen, D.; Clayton, D.A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 1974, 249, 7991–7995. [Google Scholar] [PubMed]

Holt, I.J.; He, J.; Mao, C.-C.; Boyd-Kirkup, J.D.; Martinsson, P.; Sembongi, H.; Reyes, A.; Spelbrink, J.N. Mammalian mitochondrial nucleoids: Organizing an independently minded genome. Mitochondrion 2007, 7, 311–321. [Google Scholar] [CrossRef] [PubMed]

Clayton, D.A. Replication of animal mitochondrial DNA. Cell 1982, 28, 693–705. [Google Scholar] [CrossRef]

Holt, I.J.; Lorimer, H.E.; Jacobs, H.T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 2000, 100, 515–524. [Google Scholar] [CrossRef]

Barrell, B.G.; Bankier, A.T.; Drouin, J. A different genetic code in human mitochondria. Nature 1979, 282, 189–194. [Google Scholar] [CrossRef] [PubMed]

Watanabe, K. Unique features of animal mitochondrial translation systems: The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. Proc. Jpn. Acad. B 2010, 86, 11–39. [Google Scholar] [CrossRef]

Kasamatsu, H.; Robberson, D.L.; Vinograd, J. A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc. Natl. Acad. Sci. USA 1971, 68, 2252–2257. [Google Scholar] [CrossRef]

Arnberg, A.; van Bruggen, E.F.; Borst, P. The presence of DNA molecules with a displacement loop in standard mitochondrial DNA preparations. Biochim. Biophys. Acta 1971, 246, 353–357. [Google Scholar] [CrossRef]

Di Re, M.; Sembongi, H.; He, J.; Reyes, A.; Yasukawa, T.; Martinsson, P.; Bailey, L.J.; Goffart, S.; Boyd-Kirkup, J.D.; Wong, T.S.; et al. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res. 2009, 37, 5701–5713. [Google Scholar] [CrossRef]

He, J.; Mao, C.C.; Reyes, A.; Sembongi, H.; Di Re, M.; Granycome, C.; Clippingdale, A.B.; Fearnley, I.M.; Harbour, M.; Robinson, A.J.; et al. The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J. Cell Biol. 2007, 176, 141–146. [Google Scholar] [CrossRef] [PubMed]

Antes, A.; Tappin, I.; Chung, S.; Lim, R.; Lu, B.; Parrott, A.M.; Hill, H.Z.; Suzuki, C.K.; Lee, C.G. Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria. Nucleic Acids Res. 2010, 38, 6466–6476. [Google Scholar] [CrossRef] [PubMed]

Annex, B.H.; Williams, R.S. Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle. Mol. Cell. Biol. 1990, 10, 5671–5678. [Google Scholar] [CrossRef] [PubMed]

Brown, W.M.; Shine, J.; Goodman, H.M. Human mitochondrial DNA: Analysis of 7S DNA from the origin of replication. Proc. Natl. Acad. Sci. USA 1978, 75, 735–739. [Google Scholar] [CrossRef] [PubMed]

Akman, G.; Desai, R.; Bailey, L.J.; Yasukawa, T.; Dalla Rosa, I.; Durigon, R.; Holmes, J.B.; Moss, C.F.; Mennuni, M.; Houlden, H.; et al. Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria. Proc. Natl. Acad. Sci. USA 2016, 113, E4276–E4285. [Google Scholar] [CrossRef]

Andersson, S.G.; Karlberg, O.; Canback, B.; Kurland, C.G. On the origin of mitochondria: A genomics perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 165–177. [Google Scholar] [CrossRef] [PubMed]

Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1999, 1410, 103–123. [Google Scholar] [CrossRef]

Gerhold, J.M.; Cansiz-Arda, ?.; Lõhmus, M.; Engberg, O.; Reyes, A.; van Rennes, H.; Sanz, A.; Holt, I.J.; Cooper, H.M.; Spelbrink, J.N. Human mitochondrial DNA-protein complexes attach to a cholesterol-rich membrane structure. Sci. Rep. 2015, 5, 15292. [Google Scholar] [CrossRef]

Kasashima, K.; Endo, H. Interaction of human mitochondrial transcription factor A in mitochondria: Its involvement in the dynamics of mitochondrial DNA nucleoids. Genes Cells 2015, 20, 1017–1027. [Google Scholar] [CrossRef]

Kelly, D.P.; Scarpulla, R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004, 18, 357–368. [Google Scholar] [CrossRef]

Ryan, M.T.; Hoogenraad, N.J. Mitochondrial-nuclear communications. Annu. Rev. Biochem. 2007, 76, 701–722. [Google Scholar] [CrossRef]

Ventura-Clapier, R.; Garnier, A.; Veksler, V. Transcriptional control of mitochondrial biogenesis: The central role of PGC-1α. Cardiovasc. Res. 2008, 79, 208–217. [Google Scholar] [CrossRef] [PubMed]

van de Ven, R.A.H.; Santos, D.; Haigis, M.C. Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends Mol. Med. 2017, 23, 320–331. [Google Scholar] [CrossRef] [PubMed]

Longley, M.J.; Nguyen, D.; Kunkel, T.A.; Copeland, W.C. The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J. Biol. Chem. 2001, 276, 38555–38562. [Google Scholar] [CrossRef] [PubMed]

Krasich, R.; Copeland, W.C. DNA polymerases in the mitochondria: A critical review of the evidence. Front. Biosci. (Landmark Ed.) 2017, 22, 692–709. [Google Scholar] [PubMed]

Sykora, P.; Kanno, S.; Akbari, M.; Kulikowicz, T.; Baptiste, B.A.; Leandro, G.S.; Lu, H.; Tian, J.; May, A.; Becker, K.A.; et al. DNA polymerase beta participates in mitochondrial DNA repair. Mol. Cell. Biol. 2017. [Google Scholar] [CrossRef]

Bailey, L.J.; Doherty, A.J. Mitochondrial DNA replication: A PrimPol perspective. Biochem. Soc. Trans. 2017, 45, 513–529. [Google Scholar] [CrossRef]

Kobayashi, K.; Guilliam, T.A.; Tsuda, M.; Yamamoto, J.; Bailey, L.J.; Iwai, S.; Takeda, S.; Doherty, A.J.; Hirota, K. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle 2016, 15, 1997–2008. [Google Scholar] [CrossRef]

Vasileiou, P.V.S.; Mourouzis, I.; Pantos, C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int. J. Mol. Sci. 2017, 18, 1821. [Google Scholar] [CrossRef]

Liu, P.; Demple, B. DNA repair in mammalian mitochondria: Much more than we thought? Environ. Mol. Mutagen. 2010, 51, 417–426. [Google Scholar] [CrossRef]

Myers, K.A.; Saffhill, R.; O’Connor, P.J. Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis 1988, 9, 285–292. [Google Scholar] [CrossRef] [PubMed]

Satoh, M.S.; Huh, N.; Rajewsky, M.F.; Kuroki, T. Enzymatic removal of O6-ethylguanine from mitochondrial DNA in rat tissues exposed to N-ethyl-N-nitrosourea in vivo. J. Biol. Chem. 1988, 263, 6854–6856. [Google Scholar] [PubMed]

Pinz, K.G.; Bogenhagen, D.F. The influence of the DNA polymerase accessory subunit on base excision repair by the catalytic subunit. DNA Repair 2006, 5, 121–128. [Google Scholar] [CrossRef] [PubMed]

Szczesny, B.; Tann, A.W.; Longley, M.J.; Copeland, W.C.; Mitra, S. Long patch base excision repair in mammalian mitochondrial genomes. J. Biol. Chem. 2008, 283, 26349–26356. [Google Scholar] [CrossRef] [PubMed]

Graziewicz, M.A.; Longley, M.J.; Copeland, W.C. DNA polymerase γ in mitochondrial DNA replication and repair. Chem. Rev. 2006, 106, 383–405. [Google Scholar] [CrossRef] [PubMed]

Lakshmipathy, U.; Campbell, C. Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res. 1999, 27, 1198–1204. [Google Scholar] [CrossRef] [PubMed]

Thyagarajan, B.; Padua, R.A.; Campbell, C. Mammalian mitochondria possess homologous DNA recombination activity. J. Biol. Chem. 1996, 271, 27536–27543. [Google Scholar] [CrossRef] [PubMed]

Coffey, G.; Lakshmipathy, U.; Campbell, C. Mammalian mitochondrial extracts possess DNA end-binding activity. Nucleic Acids Res. 1999, 27, 3348–3354. [Google Scholar] [CrossRef]

Tadi, K.S.; Sebastian, R.; Dahal, S.; Babu, R.K.; Choudhary, B.; Raghavan, S.C. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol. Biol. Cell 2016, 27, 223–235. [Google Scholar] [CrossRef]

Bacman, S.R.; Williams, S.L.; Moraes, C.T. Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res. 2009, 37, 4218–4226. [Google Scholar] [CrossRef]

Mason, P.A.; Matheson, E.C.; Hall, A.G.; Lightowlers, R.N. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res. 2003, 31, 1052–1058. [Google Scholar] [CrossRef] [PubMed]

de Souza-Pinto, N.C.; Mason, P.A.; Hashiguchi, K.; Weissman, L.; Tian, J.; Guay, D.; Lebel, M.; Stevnsner, T.V.; Rasmussen, L.J.; Bohr, V.A. Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair 2009, 8, 704–719. [Google Scholar] [CrossRef] [PubMed]

Kamenisch, Y.; Fousteri, M.; Knoch, J.; von Thaler, A.K.; Fehrenbacher, B.; Kato, H.; Becker, T.; Dollé, M.E.; Kuiper, R.; Majora, M.; et al. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J. Exp. Med. 2010, 207, 379–390. [Google Scholar] [CrossRef] [PubMed]

Sumpter, R., Jr.; Sirasanagandla, S.; Fernández, Á.F.; Wei, Y.; Dong, X.; Franco, L.; Zou, Z.; Marchal, C.; Lee, M.Y.; Clapp, D.W.; et al. Fanconi Anemia Proteins Function in Mitophagy and Immunity. Cell 2016, 65, 867–881. [Google Scholar] [CrossRef] [PubMed]

Schmidt, O.; Pfanner, N.; Meisinger, C. Mitochondrial protein import: From proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 2010, 11, 655–667. [Google Scholar] [CrossRef] [PubMed]

Pagliarini, D.J.; Calvo, S.E.; Chang, B.; Sheth, S.A.; Vafai, S.B.; Ong, S.E.; Walford, G.A.; Sugiana, C.; Boneh, A.; Chen, W.K.; et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134, 112–123. [Google Scholar] [CrossRef] [PubMed]

Lopez, M.F.; Kristal, B.S.; Chernokalskaya, E.; Lazarev, A.; Shestopalov, A.I.; Bogdanova, A.; Robinson, M. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis. 2000, 21, 3427–3440. [Google Scholar] [CrossRef]

Nash, R.; Weng, S.; Hitz, B.; Balakrishnan, R.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; Fisk, D.G.; Hirschman, J.E.; et al. Expanded protein information at SGD:new pages and proteome browser. Nucleic Acids Res. 2007, 35, D468–D471. [Google Scholar] [CrossRef] [PubMed]

Rezaul, K.; Wu, L.; Mayya, V.; Hwang, S.I.; Han, D. A Systematic Characterization of Mitochondrial Proteome from Human T Leukemia Cell. Mol. Cell. Proteom. 2005, 4, 169–181. [Google Scholar] [CrossRef]

Chacinska, A.; Koehler, C.M.; Milenkovic, D.; Lithgow, T.; Pfanner, N. Importing mitochondrial proteins: Machineries and mechanisms. Cell 2009, 138, 628–644. [Google Scholar] [CrossRef]

Koehler, C.M.; Merchant, S.; Schatz, G. How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem. Sci. 1999, 24, 428–432. [Google Scholar] [CrossRef]

Fox, T.D. Mitochondrial protein synthesis, import, and assembly. Genetics 2012, 192, 1203–1234. [Google Scholar] [CrossRef] [PubMed]

Neupert, W.; Herrmann, J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007, 76, 723–749. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Trougakos, I.P. Cross Talk of Proteostasis and Mitostasis in Cellular Homeodynamics, Ageing, and Disease. Oxid. Med. Cell. Longev. 2016, 2016, 4587691. [Google Scholar] [CrossRef] [PubMed]

Niforou, K.; Cheimonidou, C.; Trougakos, I.P. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014, 2, 323–332. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Evangelakou, Z.; Gorgoulis, V.G.; Trougakos, I.P. Proteome Stability as a Key Factor of Genome Integrity. Int. J. Mol. Sci. 2017, 18, 2036. [Google Scholar] [CrossRef] [PubMed]

Baker, B.M.; Haynes, C.M. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem. Sci. 2011, 36, 254–261. [Google Scholar] [CrossRef] [PubMed]

Tatsuta, T. Protein quality control in mitochondria. J. Biochem. 2009, 146, 455–461. [Google Scholar] [CrossRef] [PubMed]

Matsushima, Y.; Kaguni, L.S. Matrix proteases in mitochondrial DNA function. Biochim. Biophys. Acta 2012, 1819, 1080–1087. [Google Scholar] [CrossRef]

Bukau, B.; Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 1998, 92, 351–366. [Google Scholar] [CrossRef]

Hartl, F.U.; Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 2002, 295, 1852–1858. [Google Scholar] [CrossRef] [PubMed]

Pfanner, N.; Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol. 2001, 2, 339–349. [Google Scholar] [CrossRef] [PubMed]

Plesofsky Vig, N.; Brambl, R. Heat shock response of Neurospora crassa: Protein synthesis and induced thermotolerance. J. Bacteriol. 1985, 162, 1083–1091. [Google Scholar] [PubMed]

Schmitt, M.; Neupert, W.; Langer, T. The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J. Cell Biol. 1996, 134, 1375–1386. [Google Scholar] [CrossRef] [PubMed]

Duchniewicz, M.; Germaniuk, A.; Westermann, B.; Neupert, W.; Schwarz, E.; Marszalek, J. Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Mol. Cell. Biol. 1999, 19, 8201–8210. [Google Scholar] [CrossRef] [PubMed]

Gambill, P.D.; Voos, W.; Kang, P.J.; Miao, B.; Langer, T.; Craig, E.A.; Pfanner, N. A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. J. Cell Biol. 1993, 123, 109–117. [Google Scholar] [CrossRef] [PubMed]

Cheng, M.Y.; Hartl, F.-U.; Martin, J.; Pollock, R.A.; Kalousek, F.; Neupert, W.; Hallberg, E.M.; Hallberg, R.L.; Horwich, A.L. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 1989, 337, 620–625. [Google Scholar] [CrossRef] [PubMed]

Lewandowska, A.; Gierszewska, M.; Marszalek, J.; Liberek, K. Hsp78 chaperone functions in restoration of mitochondrial network following heat stress. Biochim. Biophys. Acta 2006, 1763, 141–151. [Google Scholar] [CrossRef]

Germaniuk, A.; Liberek, K.; Marszalek, J. A bichaperone (Hsp70–Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J. Biol. Chem. 2002, 277, 27801–27808. [Google Scholar] [CrossRef]

Felts, S.J.; Owen, B.A.; Nguyen, P.; Trepel, J.; Donner, D.B.; Toft, D.O. The Hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 2000, 275, 3305–3312. [Google Scholar] [CrossRef]

Cechetto, J.D.; Gupta, R.S. Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (TRAP-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites. Exp. Cell Res. 2000, 260, 30–39. [Google Scholar] [CrossRef] [PubMed]

Yoshida, S.; Tsutsumi, S.; Muhlebach, G.; Sourbier, C.; Lee, M.J.; Lee, S.; Vartholomaiou, E.; Tatokoro, M.; Beebe, K.; Miyajima, N.; et al. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc. Natl. Acad. Sci. USA 2013, 110, E1604–E1612. [Google Scholar] [CrossRef] [PubMed]

Kang, B.H.; Plescia, J.; Dohi, T.; Rosa, J.; Doxsey, S.J.; Altieri, D.C. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 2007, 131, 257–270. [Google Scholar] [CrossRef] [PubMed]

Montesano, G.N.; Chirico, G.; Pirozzi, G.; Costantino, E.; Landriscina, M.; Esposito, F. Tumor necrosis factor associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 2007, 10, 342–350. [Google Scholar]

Im, C.N.; Lee, J.S.; Zheng, Y.; Seo, J.S. Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species. J. Cell. Biochem. 2007, 100, 474–486. [Google Scholar] [CrossRef] [PubMed]

Guzzo, G.; Sciacovelli, M.; Bernardi, P.; Rasola, A. Inhibition of succinate dehydrogenase by the mitochondrial chaperone TRAP1 has anti-oxidant and anti-apoptotic effects on tumor cells. Oncotarget 2014, 5, 11897–11908. [Google Scholar] [CrossRef] [PubMed]

Quirós, P.M.; Langer, T.; López-Otín, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 2015, 16, 345–359. [Google Scholar] [CrossRef] [PubMed]

Pickart, C.M.; Cohen, R.E. Proteasomes and their kin: Proteases in the machine age. Nat. Rev. Mol. Cell Biol. 2004, 5, 177–187. [Google Scholar] [CrossRef] [PubMed]

López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]

Anand, R.; Langer, T.; Baker, M.J. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta 2013, 1833, 195–204. [Google Scholar] [CrossRef]

Ieva, R.; Heißwolf, A.K.; Gebert, M.; Vögtle, F.N.; Wollweber, F.; Mehnert, C.S.; Oeljeklaus, S.; Warscheid, B.; Meisinger, C.; van der Laan, M.; et al. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat. Commun. 2013, 4, 2853. [Google Scholar] [CrossRef] [PubMed]

Vögtle, F.N.; Prinz, C.; Kellermann, J.; Lottspeich, F.; Pfanner, N.; Meisinger, C. Mitochondrial protein turnover: Role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell 2011, 22, 2135–2143. [Google Scholar] [CrossRef] [PubMed]

Anand, R.; Wai, T.; Baker, M.J.; Kladt, N.; Schauss, A.C.; Rugarli, E.; Langer, T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014, 204, 919–929. [Google Scholar] [CrossRef] [PubMed]

Konig, T.; Troder, S.E.; Bakka, K.; Korwitz, A.; Richter-Dennerlein, R.; Lampe, P.A.; Patron, M.; Muhlmeister, M.; Guerrero-Castillo, S.; Brandt, U.; et al. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria. Mol. Cell 2016, 64, 148–162. [Google Scholar] [CrossRef] [PubMed]

Hao, H.X.; Khalimonchuk, O.; Schraders, M.; Dephoure, N.; Bayley, J.P.; Kunst, H.; Devilee, P.; Cremers, C.W.; Schiffman, J.D.; Bentz, B.G.; et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009, 325, 1139–1142. [Google Scholar] [CrossRef] [PubMed]

Gegg, M.E.; Cooper, J.M.; Chau, K.Y.; Rojo, M.; Schapira, A.H.; Taanman, J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/Parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 2010, 19, 4861–4870. [Google Scholar] [CrossRef] [PubMed]

Tanaka, A.; Cleland, M.M.; Xu, S.; Narendra, D.P.; Suen, D.F.; Karbowski, M.; Youle, R.J. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 2010, 191, 1367–1380. [Google Scholar] [CrossRef]

Neutzner, A.; Benard, G.; Youle, R.J.; Karbowski, M. Role of the ubiquitin conjugation system in the maintenance of mitochondrial homeostasis. Ann. N. Y. Acad. Sci. 2008, 1147, 242–253. [Google Scholar] [CrossRef]

Li, W.; Bengtson, M.H.; Ulbrich, A.; Matsuda, A.; Reddy, V.A.; Orth, A.; Chanda, S.K.; Batalov, S.; Joazeiro, C.A. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 2008, 3, e1487. [Google Scholar] [CrossRef]

Yonashiro, R.; Ishido, S.; Kyo, S.; Fukuda, T.; Goto, E.; Matsuki, Y.; Ohmura-Hoshino, M.; Sada, K.; Hotta, H.; Yamamura, H.; et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006, 25, 3618–3626. [Google Scholar] [CrossRef]

Nakamura, N.; Kimura, Y.; Tokuda, M.; Honda, S.; Hirose, S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006, 7, 1019–1022. [Google Scholar] [CrossRef] [PubMed]

Escobar-Henriques, M.; Westermann, B.; Langer, T. Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 2006, 173, 645–650. [Google Scholar] [CrossRef] [PubMed]

Wang, H.; Song, P.; Du, L.; Tian, W.; Yue, W.; Liu, M.; Li, D.; Wang, B.; Zhu, Y.; Cao, C.; et al. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: Implication of dysregulated mitochondrial dynamics in Parkinson disease. Biol. Chem. 2011, 286, 11649–11658. [Google Scholar] [CrossRef] [PubMed]

Wiedemann, N.; Stiller, S.B.; Pfanner, N. Activation and degradation of mitofusins: Two pathways regulate mitochondrial fusion by reversible ubiquitylation. Mol. Cell 2013, 49, 423–425. [Google Scholar] [CrossRef] [PubMed]

Solaki, M.; Ewald, J.C. Fueling the Cycle: CDKs in Carbon and Energy Metabolism. Front. Cell Dev. Biol. 2018, 6, 93. [Google Scholar] [CrossRef]

Salazar-Roa, M.; Malumbres, M. Fueling the Cell Division Cycle. Trends Cell Biol. 2017, 27, 69–81. [Google Scholar] [CrossRef] [PubMed]

Shiota, T.; Traven, A.; Lithgow, T. Mitochondrial biogenesis: Cell-cycle-dependent investment in making mitochondria. Curr. Biol. 2015, 25, 78–80. [Google Scholar] [CrossRef]

Margineantu, D.H.; Emerson, C.B.; Diaz, D.; Hockenbery, D.M. Hsp90 inhibition decreases mitochondrial protein turnover. PLoS ONE 2007, 2, e1066. [Google Scholar] [CrossRef]

Radke, S.; Chander, H.; Schäfer, P.; Meiss, G.; Krüger, R.; Schulz, J.B.; Germain, D. Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J. Biol. Chem. 2008, 283, 12681–12685. [Google Scholar] [CrossRef]

Azzu, V.; Brand, M.D. Degradation of an intramitochondrial protein by the cytosolic proteasome. J. Cell Sci. 2010, 123, 578–585. [Google Scholar] [CrossRef]

Lin, Y.-F.; Cole, M.H. Metabolism and the UPRmt. Mol. Cell 2016, 61, 677–682. [Google Scholar] [CrossRef] [PubMed]

Zhao, Q.; Wang, J.; Levichkin, I.V.; Stasinopoulos, S.; Ryan, M.T.; Hoogenraad, N.J. A mitochondrial specific stress response in mammalian cells. EMBO J. 2002, 21, 4411–4419. [Google Scholar] [CrossRef] [PubMed]

Pernas, L.; Scorrano, L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu. Rev. Physiol. 2015, 78, 505–531. [Google Scholar] [CrossRef] [PubMed]

Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]

Schrepfer, E.; Scorrano, L. Mitofusins, from Mitochondria to Metabolism. Mol. Cell 2016, 61, 683–694. [Google Scholar] [CrossRef]

Mitra, K.; Wunder, C.; Roysam, B.; Lin, G.; Lippincott-Schwartz, J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. USA 2009, 106, 11960–11965. [Google Scholar] [CrossRef] [PubMed]

Schieke, S.M.; McCoy, J.P., Jr.; Finkel, T. Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. Cell Cycle 2008, 7, 1782–1787. [Google Scholar] [CrossRef]

Taguchi, N.; Ishihara, N.; Jofuku, A.; Oka, T.; Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282, 11521–11529. [Google Scholar] [CrossRef]

Wai, T.; Langer, T. Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol. Metab. 2016, 27, 105–117. [Google Scholar] [CrossRef] [PubMed]

Mishra, P.; Chan, D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 2016, 212, 379–387. [Google Scholar] [CrossRef] [PubMed]

Eura, Y.; Ishihara, N.; Yokota, S.; Mihara, K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 2003, 134, 333–344. [Google Scholar] [CrossRef] [PubMed]

Olichon, A.; Emorine, L.J.; Descoins, E.; Pelloquin, L.; Brichese, L.; Gas, N.; Guillou, E.; Delettre, C.; Valette, A.; Hamel, C.P.; et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 2002, 523, 171–176. [Google Scholar] [CrossRef]

Patten, D.A.; Wong, J.; Khacho, M.; Soubannier, V.; Mailloux, R.J.; Pilon-Larose, K.; MacLaurin, J.G.; Park, D.S.; McBride, H.M.; Trinkle-Mulcahy, L.; et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 2014, 33, 2676–2691. [Google Scholar] [CrossRef] [PubMed]

Roy, M.; Reddy, P.H.; Iijima, M.; Sesaki, H. Mitochondrial division and fusion in metabolism. Curr. Opin. Cell Biol. 2015, 33, 111–118. [Google Scholar] [CrossRef] [PubMed]

Jin, S.M.; Youle, R.J. PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 2012, 125, 795–799. [Google Scholar] [CrossRef] [PubMed]

Pickrell, A.M.; Youle, R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015, 85, 257–273. [Google Scholar] [CrossRef] [PubMed]

Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Primers 2016, 2, 16080. [Google Scholar] [CrossRef]

White, F.A.; Bunn, C.L. Restriction enzyme analysis of mitochondrial DNA in aging human cells. Mech. Ageing Dev. 1985, 30, 153–168. [Google Scholar] [CrossRef]

Park, S.Y.; Choi, B.; Cheon, H.; Pak, Y.K.; Kulawiec, M.; Singh, K.K.; Lee, M.S. Cellular aging of mitochondrial DNA-depleted cells. Biochem. Biophys. Res. Commun. 2004, 325, 1399–1405. [Google Scholar] [CrossRef]

Lee, H.C.; Yin, P.H.; Chi, C.W.; Wei, Y.H. Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci. 2002, 9, 517–526. [Google Scholar] [CrossRef]

Xu, D.; Finkel, T. A role for mitochondria as potential regulators of cellular life span. Biochem. Biophys. Res. Commun. 2002, 294, 245–248. [Google Scholar] [CrossRef]

Moiseeva, O.; Bourdeau, V.; Roux, A.; Deschênes-Simard, X.; Ferbeyre, G. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol. Cell. Biol. 2009, 29, 4495–4507. [Google Scholar] [CrossRef] [PubMed]

Sahin, E.; Colla, S.; Liesa, M.; Moslehi, J.; Müller, F.L.; Guo, M.; Cooper, M.; Kotton, D.; Fabian, A.J.; Walkey, C.; et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011, 470, 359–365. [Google Scholar] [CrossRef] [PubMed]

Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1, 361–370. [Google Scholar] [CrossRef] [PubMed]

Kyrylenko, S.; Baniahmad, A. Sirtuin family: A link to metabolic signaling and senescence. Curr. Med. Chem. 2010, 17, 2921–2932. [Google Scholar] [CrossRef] [PubMed]

Zhang, B.; Cui, S.; Bai, X.; Zhuo, L.; Sun, X.; Hong, Q.; Fu, B.; Wang, J.; Chen, X.; Cai, G. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age 2013, 35, 2237–2253. [Google Scholar] [CrossRef] [PubMed]

Castex, J.; Willmann, D.; Kanouni, T.; Arrigoni, L.; Li, Y.; Friedrich, M.; Schleicher, M.; Wöhrle, S.; Pearson, M.; Kraut, N.; et al. Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4. Cell Death Dis. 2017, 8, e2631. [Google Scholar] [CrossRef]

Lee, S.M.; Dho, S.H.; Ju, S.K.; Maeng, J.S.; Kim, J.Y.; Kwon, K.S. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. Biogerontology 2012, 13, 525–536. [Google Scholar] [CrossRef]

Kaplon, J.; Zheng, L.; Meissl, K.; Chaneton, B.; Selivanov, V.A.; Mackay, G.; van der Burg, S.H.; Verdegaal, E.M.; Cascante, M.; Shlomi, T.; et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498, 109–112. [Google Scholar] [CrossRef]

Butow, R.A.; Avadhani, N.G. Mitochondrial signaling: The retrograde response. Mol. Cell 2004, 14, 1–15. [Google Scholar] [CrossRef]

Grazioli, S.; Pugin, J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front. Immunol. 2018, 9, 832. [Google Scholar] [CrossRef] [PubMed]

Dela Cruz, C.S.; Kang, M.J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 2018, 41, 37–44. [Google Scholar] [CrossRef] [PubMed]

Glück, S.; Guey, B.; Gulen, M.F.; Wolter, K.; Kang, T.W.; Schmacke, N.A.; Bridgeman, A.; Rehwinkel, J.; Zender, L.; Ablasser, A. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 2017, 19, 1061–1070. [Google Scholar] [CrossRef]

Shaheda, A.; Passos, J.F.; Birket, M.J.; Beckmann, T.; Brings, S.; Peters, H.; Birch-Machin, M.A.; Zglinicki, T.V.; Saretzki, T. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci. 2008, 121, 1046–1053. [Google Scholar] [CrossRef]

Haendeler, J.; Hoffmann, J.; Diehl, J.F.; Vasa, M.; Spyridopoulos, I.; Zeiher, A.M.; Dimmeler, S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ. Res. 2004, 94, 768–775. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Skorvaga, M.; Annab, L.A.; Van Houten, B. Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 2004, 3, 399–411. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Mandavilli, B.S.; Van Houten, B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 2006, 314, 183–199. [Google Scholar] [PubMed]

Santos, J.H.; Meyer, J.N.; Van Houten, B. Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum. Mol. Genet. 2006, 15, 1757–1768. [Google Scholar] [CrossRef]

Veatch, J.R.; McMurray, M.A.; Nelson, Z.W.; Gottschling, D.E. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 2009, 137, 1247–1258. [Google Scholar] [CrossRef]

Lill, R.; Mühlenhoff, U. Maturation of iron-sulfur proteins in eukaryotes: Mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 2008, 77, 669–700. [Google Scholar] [CrossRef]

Su, T.; Turnbull, D.M.; Greaves, L.C. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing. Genes 2018, 9, 182. [Google Scholar] [CrossRef] [PubMed]

Jendrach, M.; Pohl, S.; Voth, M.; Kowald, A.; Hammerstein, P.; Bereiter-Hahn, J. Morpho-dynamic changes of mitochondria during aging of human endothelial cells. Mech. Aging Dev. 2005, 126, 813–821. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Vougas, K.; Walter, D.; Polyzos, A.; Maya-Mendoza, A.; Haagensen, E.J.; Kokkalis, A.; Roumelioti, F.M.; Gagos, S.; Tzetis, M.; et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat. Cell Biol. 2016, 18, 777–789. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Pappas, G.; Polyzos, A.; Kotsinas, A.; Svolaki, I.; Giakoumakis, N.N.; Glytsou, C.; Pateras, I.S.; Swain, U.; Souliotis, V.L.; et al. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol. 2018, 19, 37. [Google Scholar] [CrossRef] [PubMed]

Cogliati, S.; Enriquez, J.A.; Scorrano, L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem. Sci. 2016, 41, 261–273. [Google Scholar] [CrossRef]

Lee, S.; Jeong, S.Y.; Lim, W.C.; Kim, S.; Park, Y.Y.; Sun, X.; Youle, R.J.; Cho, H. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J. Biol. Chem. 2007, 282, 22977–22983. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Klinkenberg, M.; Auburger, G.; Bereiter-Hahn, J.; Jendrach, M. Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J. Cell Sci. 2010, 123, 917–926. [Google Scholar] [CrossRef] [PubMed]

Karbowski, M.; Neutzner, A.; Youle, R.J. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 2007, 178, 71–84. [Google Scholar] [CrossRef]

Park, Y.Y.; Lee, S.; Karbowski, M.; Neutzner, A.; Youle, R.J.; Cho, H. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 2010, 123, 619–626. [Google Scholar] [CrossRef]

Hara, H.; Araya, J.; Ito, S.; Kobayashi, K.; Takasaka, N.; Yoshii, Y.; Wakui, H.; Kojima, J.; Shimizu, K.; Numata, T.; et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 305, L737–L746. [Google Scholar] [CrossRef]

Lee, Y.J.; Jeong, S.Y.; Karbowski, M.; Smith, C.L.; Youle, R.J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 2004, 15, 5001–5011. [Google Scholar] [CrossRef] [PubMed]

Sugioka, R.; Shimizu, S.; Tsujimoto, Y. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 2004, 279, 52726–52734. [Google Scholar] [CrossRef] [PubMed]

Beckenridge, D.G.; Stojanovic, M.; Marcellus, R.C.; Shore, G.C. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 2003, 160, 1115–1127. [Google Scholar] [CrossRef] [PubMed]

Frank, S.; Gaume, B.; Bergmann-Leitner, E.S.; Leitner, W.W.; Robert, E.G.; Catez, F.; Smith, C.L.; Youle, R.J. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 2001, 1, 515–552. [Google Scholar] [CrossRef]

Karbowski, M.; Lee, Y.J.; Gaume, B.; Jeong, S.Y.; Frank, S.; Nechushtan, A.; Santel, A.; Fuller, M.; Smith, C.L.; Youle, R.J. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 2002, 159, 931–938. [Google Scholar] [CrossRef] [PubMed]

Gomes, L.C.; Di Benedetto, G.; Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011, 13, 589–598. [Google Scholar] [CrossRef] [PubMed]

Dalle Pezze, P.; Nelson, G.; Otten, E.G.; Korolchuk, V.I.; Kirkwood, T.B.; Von Zglinicki, T.; Shanley, D.P. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput. Biol. 2014, 10, e1003728. [Google Scholar] [CrossRef] [PubMed]

Garcia-Prat, L.; Martinez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodriguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; et al. Autophagy maintains stemness by preventing senescence. Nature 2016, 529, 37–42. [Google Scholar] [CrossRef] [PubMed]

Korolchuk, V.I.; Miwa, S.; Carroll, B.; von Zglinicki, T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine 2017, 21, 7–13. [Google Scholar] [CrossRef]

Ahmad, T.; Sundar, I.K.; Lerner, C.A.; Gerloff, J.; Tormos, A.M.; Yao, H.; Rahman, I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: Implications for chronic obstructive pulmonary disease. FASEB J. 2015, 29, 2912–2929. [Google Scholar] [CrossRef] [PubMed]

Araya, J.; Tsubouchi, K.; Sato, N.; Ito, S.; Minagawa, S.; Hara, H.; Hosaka, Y.; Ichikawa, A.; Saito, N.; Kadota, T.; et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 2019, 15, 510–526. [Google Scholar] [CrossRef] [PubMed]

Demidenko, Z.N.; Blagosklonny, M.V. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 2008, 7, 3355–3361. [Google Scholar] [CrossRef] [PubMed]

Kwon, Y.; Kim, J.W.; Jeoung, J.A.; Kim, M.S.; Kang, C. Autophagy Is Pro-Senescence When Seen in Close-Up, but Anti-Senescence in Long-Shot. Mol. Cells 2017, 40, 607–612. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Muster, B.; Bereiter-Hahn, J.; Jendrach, M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 2012, 8, 47–62. [Google Scholar] [CrossRef] [PubMed]

Myrianthopoulos, V.; Evangelou, K.; Vasileiou, P.V.S.; Cooks, T.; Vassilakopoulos, T.P.; Pangalis, G.A.; Kouloukoussa, M.; Kittas, C.; Georgakilas, A.G.; Gorgoulis, V.G. Senescence and senotherapeutics: A new field in cancer therapy. Pharmacol. Ther. 2019, 193, 31–49. [Google Scholar] [CrossRef] [PubMed]

Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39, 359–407. [Google Scholar] [CrossRef]

Tuppen, H.A.; Blakely, E.L.; Turnbull, D.M.; Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 2010, 100, 345–348. [Google Scholar] [CrossRef]

Aunan, J.R.; Watson, M.M.; Hagland, H.R.; Søreide, K. Molecular and biological hallmarks of ageing. Br. J. Surg. 2016, 103, e29–e46. [Google Scholar] [CrossRef]

Kornicka, K.; Sz?apka-Kosarzewska, J.; ?mieszek, A.; Marycz, K. 5-Azacytydine and resveratrol reverse senescence and ageing of adipose stem cells via modulation of mitochondrial dynamics and autophagy. J. Cell. Mol. Med. 2019, 23, 237–259. [Google Scholar] [CrossRef]

Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]

Hubackova, S.; Davidova, E.; Rohlenova, K.; Stursa, J.; Werner, L.; Andera, L.; Dong, L.; Terp, M.G.; Hodny, Z.; Ditzel, H.J.; et al. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ. 2019, 26, 276290. [Google Scholar] [CrossRef] [PubMed]

Herranz, N.; Gallage, S.; Mellone, M.; Wuestefeld, T.; Klotz, S.; Hanley, C.J.; Raguz, S.; Acosta, J.C.; Innes, A.J.; Banito, A.; et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 2015, 17, 1205–1217. [Google Scholar] [CrossRef] [PubMed]

Laberge, R.-M.; Sun, Y.; Orjalo, A.V.; Patil, C.K.; Freund, A.; Zhou, L.; Curran, S.C.; Davalos, A.R.; Wilson-Edell, K.A.; Liu, S.; et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 2015, 17, 1049–1061. [Google Scholar] [CrossRef] [PubMed]

Ichim, G.; Lopez, J.; Ahmed, S.U.; Muthalagu, N.; Giampazolias, E.; Delgado, M.E.; Haller, M.; Riley, J.S.; Mason, S.M.; Athineos, D.; et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 2015, 57, 860–872. [Google Scholar] [CrossRef] [PubMed]

Buondonno, I.; Gazzano, E.; Jean, S.R.; Audrito, V.; Kopecka, J.; Fanelli, M.; Salaroglio, I.C.; Costamagna, C.; Roato, I.; Mungo, E.; et al. Mitochondria-Targeted Doxorubicin: A New Therapeutic Strategy against Doxorubicin-Resistant Osteosarcoma. Mol. Cancer Ther. 2016, 15, 2640–2652. [Google Scholar] [CrossRef] [PubMed]

Evangelou, K.; Lougiakis, N.; Rizou, S.V.; Kotsinas, A.; Kletsas, D.; Muñoz-Espín, D.; Kastrinakis, N.G.; Pouli, N.; Marakos, P.; Townsend, P.; et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 2017, 16, 192–197. [Google Scholar] [CrossRef] [PubMed]

Rizou, S.V.; Evangelou, K.; Myrianthopoulos, V.; Mourouzis, I.; Havaki, S.; Athanasiou, A.; Vasileiou, P.V.S.; Margetis, A.; Kotsinas, A.; Kastrinakis, N.G.; et al. A Novel Quantitative Method for the Detection of Lipofuscin, the Main By-Product of Cellular Senescence, in Fluids. Methods Mol. Biol. 2019, 1896, 119–138. [Google Scholar] [CrossRef]

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

美女福利视频在线观看 | 亚洲精品久久久久久久久 | 亚洲少妇毛片 | 黄网站在线观看视频 | 免费网站www在线观看 | 欧美色图片区 | 久久免费公开视频 | 亚洲av无码国产精品久久久久 | 中文字幕巨乳 | 一区二区三区麻豆 | 奇米成人影视 | 激情六月天婷婷 | 午夜精品国产精品大乳美女 | av一级久久| 亚洲视频网站在线观看 | 日本美女三级 | 毛片无遮挡 | 高h调教冰块play男男双性文 | 在线免费不卡视频 | 欧美熟妇毛茸茸 | 久久亚洲AV无码 | 亚洲精品鲁一鲁一区二区三区 | 果冻传媒18禁免费视频 | 视频在线观看电影完整版高清免费 | 伊人黄| 欧美一区二区大片 | 中文字幕在线观看 | av在线不卡播放 | 日日干狠狠干 | 蜜臀视频在线播放 | 视频1区| 国产精品变态另类虐交 | 综合人人 | 激情免费av | 午夜肉伦伦| 狠狠干欧美 | 一区在线免费 | 国产人妻精品午夜福利免费 | 亚洲av综合色区无码一区爱av | 免费草逼视频 | 正在播放欧美 | 91久久久久久久久久久久久 | 麻豆视频一区二区 | 亚洲情区 | 一级看片 | 国产久一 | 天天插天天色 | 超碰人人澡 | 人妻熟人中文字幕一区二区 | 毛片高清 | 永久免费av无码网站性色av | 日韩操比| 欧美色老头old∨ideo | 欧美成人午夜 | 国产99久久久久久免费看 | 欧美福利一区二区 | 亚洲天堂高清 | 亚洲三级电影网站 | 体内精69xxxxxx | 久久国产美女视频 | 丰满岳妇伦在线播放 | 在线观看国产福利 | 我们俩电影网mp4动漫官网 | 91丨国产丨捆绑调教 | 成人黄色在线播放 | 欧美一级录像 | 少妇又色又爽又高潮极品 | 欧美在线视频播放 | 亚洲va久久久噜噜噜无码久久 | 日本一二三区不卡 | 久久久久久国产视频 | 国产视频第二页 | 久久91精品 | 污网站免费在线 | 精品一区二区三区在线视频 | 日本亚洲色大成网站www久久 | 久操久操久操 | 性高潮久久久久 | 国产婷婷色一区二区三区在线 | 中文字幕日韩经典 | 久久亚洲精品国产 | 久久国产视频网站 | 国产麻豆成人传媒免费观看 | 午夜视频污 | 伊人久久大香线蕉综合75 | 影音先锋成人资源 | 懂色av一区二区三区四区 | 男人的天堂av网 | 先锋影音av中文字幕 | www.伊人久久 | 熟妇高潮喷沈阳45熟妇高潮喷 | 中文字幕在线观看日本 | 欧美1级片 | 色婷婷激情网 | 香蕉视频日本 | 无码国产精品久久一区免费 | 日韩精品成人一区二区在线 | 日韩视频欧美视频 | 免费午夜网站 | www.四虎.| 能看av的网站 | 亚洲av高清一区二区三区 | 婷婷视频网 | 国产成人精品一区二区三区 | 午夜一级视频 | 亚洲欧洲日韩av | 精品国产乱 | 精品自拍一区 | 亚洲乱亚洲乱妇 | 国产一区二区精品在线观看 | 国产免费av一区二区三区 | 中字幕一区二区三区乱码 | 欧美日韩一 | 色老头在线视频 | 欧美伦理一区二区三区 | 182tv福利视频 | 啪啪啪毛片 | 黄色在线播放网站 | 4438五月天| 舐め犯し波多野结衣在线观看 | 婷婷五月在线视频 | 伊人影院99 | 永久看看免费大片 | 亚洲欧洲在线视频 | 中文字幕资源在线 | caoporn国产 | 小蝌蚪视频色 | 日韩一区二区三区在线观看视频 | 在线观看日韩一区 | 天海翼视频在线观看 | 亚洲妇女无套内射精 | 国产欧美精品一区二区色综合朱莉 | 深夜福利网站在线观看 | 性欧美1819性猛交 | 免费看麻豆 | 1000部啪啪未满十八勿入超污 | 天天草av| 一级特黄a大片免费 | 国产系列精品av | 免费欧美一区 | china国模大尺度pics | 欧美激情在线看 | 一级片在线观看免费 | 国产三级视频在线播放 | av一区在线 | 亚洲不卡一区二区三区 | 欧美二区三区 | www.男女 | 国产亚洲成av人在线观看导航 | 国产一级免费在线观看 | 中文字幕第35页 | 国产精品高潮呻吟AV无码 | 久久久夜 | 欧美区在线 | 日韩中文字幕在线看 | 成全影视在线观看第8季 | 亚洲综合色婷婷 | 99re最新网址 | 国产熟妇一区二区三区aⅴ网站 | 一区二区三区在线播放 | 久久高清精品 | 黄色视屏在线 | 精品无码人妻一区二区三区 | 国产麻豆久久 | 色狠 | 爱逼综合| 亚洲另类春色 | 综合久久一区 | 一级黄色录像大片 | 精品产国自在拍 | 97精品一区二区三区 | 51妺嘿嘿午夜福利 | 香蕉av在线播放 | 国产精品天天干 | 国产人妻人伦精品1国产 | 操在线视频 | 欧美极品在线 | 欧美成人免费一级人片100 | 伊人久久超碰 | 成人av影视在线观看 | 在线观看网页视频 | 日韩精品一级 | 色伊人久久 | v天堂在线 | 国精产品一区一区三区 | 97桃色 | 国产精品自拍偷拍视频 | 先锋资源av在线 | 日韩中文一区二区三区 | 男人av网| 特黄一区二区三区 | 国产吧在线 | 91久久久久国产一区二区 | 总裁憋尿呻吟双腿大开憋尿 | 日本美女久久 | 午夜视频欧美 | 超碰在线cao | 无码人妻精品一区二区三应用大全 | 一道本在线观看视频 | 国产高潮在线 | 亚洲男人天堂 | 综合性色 | 国产精品区一区二区三 | aaaaa级片 | 欧美一级做性受免费大片免费 | 第一宅男av导航入口 | 天天色天天看 | 丁香六月婷婷激情 | 日韩淫 | 各处沟厕大尺度偷拍女厕嘘嘘 | 欧美超碰在线观看 | 欧美另类自拍 | 解开乳罩喂领导吃奶 | 超碰免费公开 | 国产性猛交普通话对白 | 国产精品久久久久9999 | www,99| 雷电将军和丘丘人繁衍后代视频 | 精品一区二区av | 国产三级小视频 | 一级免费毛片 | 色噜噜色综合 | 欧美看片| 88久久精品无码一区二区毛片 | 91免费视频免费版 | 中文字幕人妻丝袜乱一区三区 | 一区二区精品在线观看 | 国产精品厕所 | 欧美性大战久久久久久久 | 精品午夜福利在线观看 | 国产探花一区 | 国产精品18| 日日躁夜夜躁白天躁晚上躁91 | 黄色一级片免费在线观看 | 伊人亚洲综合 | 丁香花五月天 | 中文字幕亚洲无线码在线一区 | 国产原创在线观看 | 国产精品久久久久久久久久小说 | 天天射视频 | 涩涩视频软件 | 交专区videossex农村 | 亚洲激情图片区 | 就操网 | 欧美视频导航 | 性按摩玩人妻hd中文字幕 | 免费成人黄色片 | 亚洲欧美va天堂人熟伦 | 久久久夜色精品 | 蜜臀av一区| 男人资源网站 | 精品丰满少妇一区二区三区 | 男女网站免费 | 毛片久久久久久久 | 午夜污| 欧美中文字幕在线观看 | 欧日韩一区二区三区 | 日韩精品视频免费播放 | 国产又爽又黄免费软件 | 男女做爰猛烈吃奶啪啪喷水网站 | 欧美午夜性春猛交 | 欧美综合日韩 | av激情在线观看 | 午夜国产精品视频 | 最新中文字幕2019 | 亚洲成年人| 国产一级色| 影音先锋一区 | 在线免费观看黄 | 少妇精品高潮欲妇又嫩中文字幕 | 欧美69精品久久久久久不卡 | 精品人体无码一区二区三区 | 日韩精品视频在线 | 69热在线 | 国产精品刺激 | 欧美一级淫片bbb一84 | 麻豆成人91精品二区三区 | 超碰在线小说 | 精品96久久久久久中文字幕无 | 久久色网 | 日韩资源站 | 日本在线精品视频 | 欧美日韩在线视频播放 | 亚洲欧美日韩偷拍 | 久久久国产精华液 | 激情一区二区 | www.99视频| 中文字幕一区二区三区av | 免费a视频在线观看 | 一区www | 国产又黄又猛又粗又爽 | 嫩草嫩草嫩草 | 免费在线日韩 | 波多野结衣网址 | 99爱在线观看 | 欧美激情精品久久 | av在线一 | av解说在线观看 | 91在线一区二区三区 | 亚洲第一页在线观看 | 亚洲欧美精品在线观看 | 青青草毛片 | 男人草女人 | 偷偷久久 | 一级片免费在线 | 免费毛片在线播放免费 | 99视屏 | www.av色 | 日韩欧美黄色 | 国产精品2区 | 美女被到爽高潮视频 | 亚洲最新中文字幕 | 亚洲成人av网址 | 亚洲成人av电影 | 午夜福利视频 | 国产喷水吹潮视频www | 黄色片子看看 | 福利视频在线免费观看 | 日韩二区在线观看 | 久久精品屋 | 美女隐私免费 | 一级黄色片在线观看 | 国产真人毛片 | 青青操视频在线播放 | 玖草在线视频 | 毛片在线观看网站 | 午夜精品久久久久久久久久久久久 | 成 人 免费 黄 色 | 精品人体无码一区二区三区 | 亚洲一道本 | 男生插女生的视频 | 欧美一区日韩一区 | 亚洲成人av免费观看 | 久久免费视频播放 | 国产91免费 | 狠狠干在线观看 | 日韩激情文学 | 久久久国产精品免费 | 中文字幕一区二区三区四区视频 | 中文字幕在线观看播放 | 国产精品1区2区 | 欧美精品一区在线 | 国产精品自拍在线 | 波多野结衣日韩 | 中国一级特黄录像播放 | 久久免费看 | 狠狠躁夜夜 | 在线看黄免费 | 嫩草影院懂你的影院 | 激情丁香网 | 国产精品第六页 | 亚洲免费三区 | 寂寞少妇让水电工爽hd | 天海翼一区二区 | 国产xxxxxxxxx | 久久新 | 狠狠干五月 | 久久久夜色精品 | 亚洲欧美日韩一区二区三区四区 | 国产99久久久欧美黑人 | 青青草55| 天天干天天爽天天射 | 亚洲综合在线观看视频 | 免费在线国产精品 | 久久综合激情网 | 一区二区三区亚洲视频 | av色播| 日本伦理一区二区三区 | 久久精品二区 | 神马午夜久久 | 激情综合五月天 | 91精品国产91久久久久 | 日本特黄特黄刺激大片 | 小镇姑娘国语版在线观看免费 | 99精品人妻无码专区在线视频区 | 日韩高清av在线 | jizzzxxxx| 国产亚洲第一页 | av2018| 国产1级片 | www.黄色大片 | 好姑娘在线观看高清完整版电影 | 欧美综合视频在线观看 | 麻豆国产一区 | 老公吃小头头视频免费观看 | 欧美日韩一区二区三区不卡视频 | 99久草| 亚洲午夜久久久久久久久红桃 | 免费日批网站 | 免费一区视频 | 欧美特黄一区二区三区 | 蜜桃视频污在线观看 | 男女网站视频 | 久久久噜噜噜久久久 | 夜夜操网站 | 粉嫩精品久久99综合一区 | 村上凉子av| 亚洲伦理自拍 | 一区二区三区在线观看免费 | 亚洲一区二区三区高清 | 欧美日韩一区二区在线观看 | 国产黄a三级三级三级 | 狠狠夜 | 视频二区| 国产黑丝av| 阿v天堂2014 男女床上拍拍拍 | 国产精品有限公司 | 欧美福利视频在线观看 | 琪琪色网 | 国产乱子伦精品无码码专区 | 色姑娘久 | 超碰97在线资源 | 手机看片福利一区 | 最新国产在线视频 | 日本在线播放视频 | 青青一区二区 | 久久久久久av无码免费网站 | 亚洲看片网 | 黄色污污网站 | 久久精品影视 | 一级特黄aa大片欧美 | 无码粉嫩虎白一线天在线观看 | 中文字幕av久久爽 | 高潮疯狂过瘾粗话对白 | 中午字幕在线观看 | 视频一区二区欧美 | 少妇被中出 | 一区自拍 | 国产伦精品一区二区三区 | www亚洲视频 | 99久久人妻精品免费二区 | 伊人天天综合 | 欧美成人精品在线观看 | 日韩av在线免费观看 | 91porny九色 | 成年性生交大片免费看 | 蜜臀99久久精品久久久久久软件 | 无遮挡在线观看 | 国产三级观看 | 日本欧美一级 | 国产尤物视频在线观看 | 无法忍受在线观看 | 欧美性猛交ⅹxxx乱大交3 | 国产乱码久久久久 | 日韩免费视频一区二区视频在线观看 | 日韩av成人 | 国产在线欧美日韩 | 强行糟蹋人妻hd中文字幕 | 97看片网 | 午夜精品久久久久久久99老熟妇 | 一级全黄少妇性色生活片 | 99在线视频精品 | xx性欧美肥妇精品久久久久久 | 免费看污片的网站 | av黄色在线观看 | 亚洲国产精品综合 | 性爱视频在线免费 | 日本a级c片免费看三区 | 久久免费播放 | 久久精品一区二区 | 欧美成人一级片 | 在线视频 日韩 | 原神女裸体看个够无遮挡 | 久久看片 | 成人三级电影网站 | 91免费在线 | 精品综合网 | 午夜福利视频一区二区 | 黄色免费av网站 | 91嫩草在线 | 欧美高清精品 | 夫妻黄色片| 在线一二区 | 毛片网页 | 男人的天堂久久 | 久久亚洲精品国产 | 黄色在线观看视频网站 | 精品亚洲永久免费 | 少妇又色又紧又爽又刺激视频 | 亚洲天堂777 | 美女扒开尿口让男人桶 | 最近中文在线观看 | 日韩电影精品 | 男人插入女人下面视频 | 少妇无套高潮一二三区 | 成人无高清96免费 | 人人看人人看 | 亚洲精品视频在线观看免费 | av中文字幕网 | 德国老妇性猛交 | 看91| 日本久久久久久久久久久 | 亚洲av中文无码乱人伦在线观看 | 欧美激情亚洲激情 | 一本色道久久88亚洲精品综合 | 欧美gv在线观看 | 国产精品国产精品国产专区蜜臀ah | 欧美日本一本 | 亚洲色视频 | 北条麻妃青青久久 | 朝桐光在线观看 | 欧美国产精品一区 | 国产尤物在线视频 | 污网站在线看 | 日本最新中文字幕 | 狠狠干夜夜干 | 东北少妇bbbb搡bbb搡 | 91破处视频 | 国产人妖在线观看 | 亚洲国产专区 | 91大神视频在线播放 | 国产精品无码久久久久一区二区 | 国产新婚疯狂做爰视频 | 亚洲视频在线播放免费 | www.黄色免费| v片在线观看| 好男人www社区在线视频夜恋 | 一区二区三区影院 | 亚洲乱亚洲乱妇 | 手机免费av | 99久热 | 最近中文字幕mv免费高清在线 | 丰满少妇一区二区三区专区 | www.激情五月 | 麻豆性视频 | 日本久久片 | 欧美性大战xxxxx久久久 | 成人音影 | 日本一级片在线观看 | 干美女视频 | 亚洲啊啊啊啊啊 | 国产色图视频 | 理论片一级 | 91在线免费播放 | 影音先锋久久 | 欧美第四页 | 国产人妻精品午夜福利免费 | 对白刺激theporn | 久久久久亚洲av无码专区喷水 | av资源天堂 | 可以免费观看的毛片 | 女同另类之国产女同 | 丰满人妻一区二区三区免费 | 国产香蕉av | 国产私人影院 | 99色99 | 久久精品一二三 | 欧美三p | 成人动漫在线免费观看 | 人人干人人澡 | 午夜视频福利在线观看 | 黄色片视频免费观看 | 精品999久久久 | 亚洲性色av| 丰满少妇被猛烈进入无码 | 青青草公开视频 | 久久久久久亚洲中文字幕无码 | 国产va在线观看 | 91狠狠干 | 性久久久久久久 | 91成人亚洲 | 久久精品一区 | 狠狠干,狠狠操 | 自拍欧美日韩 | 91久久久久久久久久久久 | 日本黄色美女网站 | 日韩免费网站 | 国产精品乱码久久久久久 | 天天草天天操 | 国产精品呻吟久久 | 国产大片av| 69re视频| 色多多视频网站 | 久久观看最新视频 | 欧美日韩一区二区在线播放 | 一本久道久久综合无码中文 | 午夜天堂 | 欧美日韩一区二区三区不卡 | 日韩电影三级 | 亚洲乱熟女一区二区 | 亚洲a网 | 综合久久综合 | 男生操男生网站 | 欧美日韩国产一中文字不卡 | 一级黄色片欧美 | 波多野结衣潜藏淫欲 | 亚洲精品电影在线 | 日日躁夜夜躁白天躁晚上躁91 | 美女视频在线观看免费 | 最新视频 - 88av | 欧美 日韩 国产 在线 | 国产原创视频 | 欧美激情视频一区 | 亚洲欧美另类图片 | 日韩中文在线视频 | 麻豆视频在线观看免费 | 亚洲图片欧美色图 | 国产免费av一区二区三区 | 粉嫩小箩莉奶水四溅在线观看 | 欧美一级一区二区三区 | 色妞干网| 2018中文字幕在线观看 | 丁香免费视频 | 日韩国产成人在线 | 国产日韩网站 | 男人资源网站 | 日韩无码精品一区二区三区 | 开心激情综合网 | 在线观看成人网 | 99热国产在线观看 | 精品人人妻人人澡人人爽牛牛 | 亚洲熟女乱综合一区二区三区 | 午夜精品视频在线 | 加勒比综合在线 | 成人导航网站 | 黄色av资源| av免费看在线 | 丁香伊人网 | 亚洲AV无码国产成人久久 | 伊人av网| 国产精品久久久久久一区二区三区 | 久久91精品 | 久久视频一区二区三区 | 成人久久精品人妻一区二区三区 | 亚洲精品一区二区在线 | 中文字幕乱码一区二区三区 | 久久黄色录像 | 尤物影院在线观看 | 一级看片免费视频 | 亚洲av永久中文无码精品综合 | 国产欧美一级 | 男女国产视频 | 五月婷婷综合激情 | 久久精品电影网 | 久草视频网 | 免费在线观看a级片 | 深夜福利一区二区 | 日韩成人精品一区二区三区 | 日本wwwxxx| 激情久久网站 | 国产精品视频免费在线观看 | 欧美日韩久久精品 | 日本精品一二区 | 欧美搞逼视频 | 大帝av| 国产精品视频久久久久久久 | 123成人网| 免费福利视频在线观看 | 在线免费精品视频 | 中文字幕免费高清网站 | 黄色正能量网站 | 国产精品xxx在线观看 | 国产成人精品在线播放 | 日本美女一区二区 | 欧美影院 | 女大学生的家政保姆初体验 | 男女av免费 | 黄色三级免费观看 | 久久免费高清 | 香蕉视频97 | 爆操网站 | 欧美成网站 | 神马午夜一区二区 | 你懂的国产在线 | 亚欧美日韩 | 国产女主播喷水高潮网红在线 | 蜜桃av一区 | 天天人人精品 | 免费h片在线观看 | 久久91亚洲人成电影网站 | 95国产精品 | 日韩精品在线不卡 | 91精品国产欧美一区二区成人 | 911香蕉| 天堂一区二区三区四区 | 久热av在线| 国产成人精品无码片区在线 | 97精品久久人人爽人人爽 | 超碰1997 | 日韩欧美综合 | 在线观看a视频 | 一级片视频网站 | 伊人青青草视频 | 日本在线天堂 | 九色av| 天天色天天色 | 亚洲品质自拍视频 | 男女黄床上色视频免费的软件 | 成人三级视频 | 久久精品在线观看 | 在线综合视频 | 成年人a级片 | 麻豆一区产品精品蜜桃的特点 | 欧美第三页 | 伊人av网 | 亚洲激情第一页 | 久久免费的精品国产v∧ | a天堂在线观看 | 麻豆网站在线看 | 豆花视频在线播放 | 国产113页| 亚洲久久色 | 黄色成年视频 | 欧美四虎 | 亚洲视频 中文字幕 | 91亚洲国产成人久久精品网站 | 国产一二 | 51热门大瓜今日大瓜 | 国产精品一区二区精品 | 777四色 | 亚洲乱码国产乱码精品精软件 | 少妇人禽zoz0伦视频 | 欧美成人精精品一区二区频 | 日本免费黄色大片 | 四虎影视永久免费观看 | 亚洲成人av| 香蕉视频在线免费 | 探花一区 | 欧美日韩国产大片 | 看片网址国产福利av中文字幕 | 免费看裸体视频网站 | 四虎影视永久 | 亚洲在线第一页 | 亚洲欧美国产精品专区久久 | 国产二区视频在线观看 | 欧美日韩成人 | 国模啪啪一区二区三区 | 极品探花在线 | 男女无遮挡猛进猛出 | 国产夜夜夜 | 国产亚洲精品久久久久动 | 亚洲精品日韩丝袜精品 | 国产草逼视频 | 黄色aaa| 日本少妇电影 | 嫩草精品 | 日韩二三区 | 中文字幕+乱码+中文字幕明步 | 午夜精品久久久久久 | 日人视频| 日日日日日日bbbbbb | 亚洲+小说+欧美+激情+另类 | 懂色av一区 | 性生交大全免费看 | 日韩欧美性视频 | 日韩免费高清一区二区 | 在线观看高清视频 | 日韩精品国产一区二区 | 性综合网| 亚洲v欧美 | 国产日韩三级 | 久久鲁视频 | 欧美在线免费观看视频 | 在线观看国产亚洲 | 澳门久久| 白白色免费视频 | 午夜簧片 | 白白色在线播放 | 无套内谢老熟女 | 午夜毛片电影 | 色综合欧美 | 日韩淫片| 饥渴放荡受np公车奶牛 | 久久青青热 | 久久久精品国产免费爽爽爽 | 国产精品久久999 | 阿v天堂在线观看 | 国产第一亚洲 | 黄色录像二级片 | 五月天婷婷激情网 | 欧美精品色哟哟 | 综合一区 | 少妇太爽了太深了太硬了 | 香港三级日本三级 | 久久精品成人av | 中文字幕一区二区三区在线视频 | 另类性姿势bbwbbw | 秘密的基地| 中文字幕二区三区 | 久久精品噜噜噜成人 | 波多野结衣高清视频 | 99精品久久久久久中文字幕 | 天天精品视频 | 中文字幕人妻一区二区 | 国产一级片免费观看 | 国产夜夜夜 | 91精品国产99久久久久久红楼 | 亚洲 欧洲 日韩 | 国产成人久久精品 | 亚洲AV成人无码一二三区在线 | 亚洲永久 | 成人在线播放视频 | 精品人妻伦一区二区三区久久 | 亚洲免费视频网 | 免费一级片网站 | 奴性女会所调教 | 中文字幕在线亚洲 | 国产乱在线| 大尺度做爰啪啪床戏 | 日韩激情啪啪 | 亚洲成人网在线播放 | 少妇脱了内裤让我添 | 一级黄色在线视频 | 黄色在线免费网站 | 日本免费在线观看视频 | 老司机一区二区三区 | 久久久999久久久 | 欧美特级黄色录像 | 白石茉莉奈中文字幕在 | 一区二区中文字幕在线观看 | 欧美色图在线播放 | 岛国福利视频 | 亚洲精品久| 亚洲熟悉妇女xxx妇女av | 黄色av资源| 欧美一区二区日韩 | 日韩成人在线看 | 77777av | 国模私拍在线观看 | 成人性生交大片免费 | 天堂视频在线免费观看 | 中文字幕一区二区久久人妻 | 国产精品久热 | 强伦人妻一区二区三区 | 日本福利一区二区 | 男生看的污网站 | 性自由色xxxx免费视频 | 涩涩999| 中文成人无字幕乱码精品区 | 欧美三级成人 | 久久久88| 亚洲精品777 | 亚洲熟妇一区二区三区 | 97人人视频| 日本特黄一级片 | 欧美日本日韩 | 日韩精品在线免费观看视频 | 日韩av手机在线 | www.插插插.com| 亚洲欧美另类综合 | 久久久成人免费 | 三上悠亚 电影 | 亚洲国产私拍精品国模在线观看 | 黄色靠逼视频 | 天天爱夜夜爱 | 2019天天操 | 亚洲一区二区自拍偷拍 | 在线免费看av | 中文字幕观看在线 | 亚洲成年人av | 亚洲第一在线 | 日批在线观看 | 成人一区二区三区在线 | av免费网| 天天色播 | 亚洲黄色网页 | 污网站免费 | 日韩三级在线观看 | 超碰狠狠操 | 免费裸体美女网站 | 成人免费va视频 | 欧美性猛交乱大交3 | 成年人的毛片 | 国产国语老龄妇女a片 | 中文字幕在线视频不卡 | 97香蕉久久超级碰碰高清版 | 中文字幕在线永久 | 亚洲欧美综合精品久久成人 | 国产真实乱人偷精品 | 久一区二区三区 | 欧美日韩成人网 | 日本少妇bbwbbw精品 | 免费在线一级片 | 黄色成人毛片 | 2021av| 亚洲一二三区在线 | 老版水浒传83版免费播放 | 91娇羞白丝 | 麻豆高清视频 | 国产69精品久久久 | 欧美激情视频一区二区三区在线播放 | 涩婷婷| 爱爱综合网 | 中文字幕日韩三级片 | 无码精品人妻一区二区三区漫画 | 亚洲国产精品国自产拍久久 | free性欧美hd精品4k | 中文字幕人妻一区二区在线视频 | 美女草逼视频 | 国产精品久久久久久久久久直播 | 污污内射久久一区二区欧美日韩 | 91视频在线观看免费 | 中文字幕精品一区二区精 | 精品日韩在线视频 | 成人18视频免费69 | 麻豆视频免费看 | 91亚瑟| 女的高潮流时喷水图片大全 | 日日干日日草 | 亚洲黄片一区 | 五月天激情综合网 | 91蜜桃网站 | www.在线观看视频 | 美日韩一区 | 武林美妇肉伦娇喘呻吟 | 超污网站在线观看 | 99久久精品国产一区二区成人 | 91在线无精精品白丝 | 嫩草嫩草嫩草嫩草 | 6—12呦国产精品 | 999国产精品亚洲77777 | 国产精品无码成人网站视频 | 国产精品天天操 | 男人午夜影院 | 国产91一区二区三区在线精品 | 男男肉耽高h彩漫 | 狠狠五月天 | 久久水蜜桃 | 免费黄色av网站 | www日韩| 少妇一级淫片免费视频 | 国产黄色片在线 | 成人免费看av | 一区二区三区四区国产 | 一区二区三区视频免费在线观看 | 最新av片| 日韩一区2区 | 奇米视频在线观看 | 女同性做受全过程动图 | 95在线视频 | 国产一级淫片免费 | caopor超碰 | 国产免费久久精品国产传媒 | 国产精品系列在线观看 | 亚洲国产欧美日韩在线 | 午夜激情影视 | 国产在线三区 | 右手影院亚洲欧美 | 荒野求生21天去码版网站 | 色婷婷777 | 成年人在线视频免费观看 | av免费入口 | 九九热视频在线播放 | av成人在线看 | 精品女同一区二区三区 | 国产黄色片免费观看 | 久久久久久久一区二区 | av天天色| 91毛片网 | 手机在线看片1024 | 电影91久久久 | 亚洲小说春色综合另类 | 人人射人人爱 | 中文字幕超清在线免费观看 | 欧美日韩在线观看一区二区三区 | 一区二区三区国产av | 足交在线观看 | 国产精成人品免费观看 | 日日骚av | 欧美老熟妇一区二区三区 | 91精品国产99久久久久久 | 视频在线观看免费 | 原神女裸体看个够无遮挡 | 欧美99视频| 日本欧美国产在线 | 蜜臀在线视频 | 国产精品成人自拍 | 男男play视频 | 亚洲精品色午夜无码专区日韩 | 国产做受麻豆动漫 | 中文字幕亚洲第一 | 国产色区 | 日韩av大片 | 日韩福利社 | av手机免费在线观看 | 国产欧美成人 | 大胸美女网站 | 欧美性吧| 老司机午夜影院 | 亚洲网站一区 | 超碰在线进入 | 国产精品电影在线观看 | 国产一区久久久 | 男人天堂久久久 | 超碰啪啪 | 国产九色视频 | 久久网国产 | 96精品在线| 狠狠操在线观看 | 国产亚洲精品久久久久久 | 波多野结衣av在线观看 | 免费日韩一区二区 | 奇米网久久 | 亚洲综合二区 | 999国产精品| 国产精品一区二区在线看 | 日韩欧美在线不卡 | 一本大道久久 | 欧美激情国产日韩精品一区18 | 偷拍欧美亚洲 | 日本免费爱爱视频 | 国产精品视频久久久久久 | 日本黄色一区二区 | 少妇无码一区二区三区 | 在线观看视频你懂得 | 91色片| 日韩精品欧美 | 激情久久久久久 | 一级淫片免费 | 亚洲一区二区三区四区视频 | 先锋资源国产 | 午夜天堂网 | 蜜桃视频污在线观看 | 久久久久久久久久一区二区三区 | 国语对白av | 99热久| 国产高潮av| 少妇三级| 美女被草 | 国产一区二区网站 | 一区二区三区国产av | 婷婷久久精品 | 欧美乱仑| 亚洲高清在线观看视频 | 日本在线看片 | 日本三级小视频 | 久久久久久一区二区三区 | 毛片3 | 国产av人人夜夜澡人人爽 | 熟妇熟女乱妇乱女网站 | 亚洲精品97 | 国产精品午夜电影 | 伊人狠狠干 | 亚洲小说图片区 | 操操操综合网 | 日韩一道本 | 一区二区三区视频观看 | 不卡中文av | 男人天堂av网站 | 欧美第一网站 | 无码精品人妻一区二区 | hs网站在线观看 | 国产精品美女久久久 | 国产第一区第二区 | 最新日韩视频 | 亚洲av熟女国产一区二区性色 | 日韩城人网站 | av加勒比| 女人叫床很黄很污句子 | 亚洲麻豆av | 欧美第一页 | eeuss国产一区二区三区 | 欧美伦理一区二区三区 | 婷婷九月丁香 | 日韩影院一区二区 | 新婚若妻侵犯中文字幕 | 高清免费视频日本 | 69精品久久| 亚洲最大成人av | 成人av不卡 | 手机在线不卡av | 国产一区二区三区精品视频 | 久久久久久久久久久久电影 | 中文字幕乱码亚洲精品一区 | 一级黄网 | 性色在线观看 | 波多野结衣视频免费在线观看 | 男女污网站 | 天天看黄色片 | 亚洲av成人片色在线观看高潮 | 99插插插 | 凹凸福利视频 | 国产精品精东影业 | 在线日韩一区 | 穿情趣内衣被c到高潮视频 操操综合 | 波多野结衣av在线观看 | 免费动漫av | 久久狠 | 日本日皮视频 | 西比尔在线观看完整视频高清 | 亚洲人免费 | 少妇高潮灌满白浆毛片免费看 | 美女张开双腿让男人捅 | 波多野结衣a v在线 欧美最猛黑人xxxx | 最近中文字幕在线中文高清版 | 在线亚洲一区二区 | 亚洲精品99| 日本一区二区视频在线播放 | 国产稀缺真实呦乱在线 | 一本一道久久综合狠狠老精东影业 | 久久人人做 | 色综网 | 亚洲国产成人精品一区二区三区 | 亚洲精品视频免费看 | 国产在线你懂得 | 久久精品欧美一区 | 午夜伦情 | 中文字幕少妇 | 青青艹在线视频 | 最新av片| 久久精品一级片 | 丰满少妇乱子伦精品看片 | 91精品国产一区二区三区 | 色综合久久久无码中文字幕波多 | 葵司ssni-879在线播放 | 超碰人人在线观看 | 夜色福利视频 | 两性av | 亚洲精品免费播放 | 欧美国产三级 | 九九亚洲| 肥老熟妇伦子伦456视频 | 无码久久精品国产亚洲av影片 | 久久99日韩 | 一区二区三区四区av | 色香色香欲天天天影视综合网 | 亚洲美女视频 | 青青草原在线免费观看视频 | 一区二区视频在线 | 色妞ww精品视频7777 | 在线看黄免费 | 免费又黄又爽又猛大片午夜 | 亚洲乱码一区二区三区 | 大尺度做爰床戏呻吟舒畅 | 中文字幕在线观看的网站 | 人人妻人人爽人人澡人人精品 | 伦理自拍 | 日啪| 欧美三区四区 | 激情第四色 | 亚洲色图13p| 天天久久综合网 | 一区二区三区亚洲视频 | 国产精品欧美性爱 | 国产吃瓜在线 | 亚洲国产在 | 四虎影院在线视频 | 韩国一级一片高清免费观看 | 69人妻一区二区三区 | 欧美成人做爰猛烈床戏 | 黑人操日本女人 | 超碰在线人人草 | 黄色精品 | 成都免费高清电影 | 日韩精品一区二区三区视频在线观看 | 91福利网站 | 黄色福利网 | 久久久久97 | 在线观看免费小视频 | 91一区在线| 看一级黄色 | 色呦呦在线观看视频 | 天天夜夜啦啦啦 | 天堂福利在线 | 午夜污| 亚洲欧美激情小说另类 | 日韩videos| 有码视频在线观看 | 国产aa毛片 | 亚洲天堂欧美 | 国产不卡免费视频 | 国产精品久久毛片 | 亚洲一区av在线 | 日日日日日日 | 少妇aa | 久久久亚洲成人 | 国产主播av在线 | 欧美三区四区 | 在线免费观看一级片 | 飘花影院伦理片 | 国精产品一区一区三区mba下载 | 国语对白少妇spa私密按摩 | 国产在线欧美 | 白白色免费视频 | 日韩精品久久久久久免费 | 日韩在线视频观看 | 伊人黄色 | 免费观看已满十八岁 | 美女又黄又免费的视频 | 亚洲欧洲精品在线 | 成人教育av | 日本免费一二三区 | 欧美日韩中文字幕视频 | 懂色av一区 | 最好看十大无码av | 久国久产久精永久网页 | 毛片久久久 | 欧美成人短视频 | 超薄肉色丝袜一区二区 | 欧美激情视频一区 | 日本狠狠干 | 91免费福利 | 黄色一级网站 | 日韩无码精品一区二区 | 日韩一区二区在线观看视频 | 日韩专区第一页 | 色先锋av资源 | 国产一区综合 | av资源免费观看 | 伊人久久精品一区二区三区 | 亚洲黄网在线观看 | 欧美日韩久久 | juliaann精品艳妇hd | 国产精品有码 | 在线观看视频 | 日韩三级视频在线播放 | 天堂一区二区三区 | 中文字幕乱码亚洲精品一区 | 啪啪网页 | 国产在线不卡视频 | 国产传媒av | 欧日韩av| 一对一色视频聊天a | 少妇一级淫片免费播放 | 日韩欧美资源 | 精品国产一二区 | 丝袜老师让我了一夜网站 | 男人操女人的免费视频 | 国产午夜精品无码 | 亚洲人视频在线观看 | 国产精品xxx在线观看www | 婷婷六月综合网 | 一级久久久久久 | 这里只有精品视频在线观看 | 欧美日韩首页 | 狠狠狠狠狠狠干 | 欧美亚洲一 | 麻豆国产尤物av尤物在线观看 | 国产一级久久 | 2023天天操 | 嫩草影院菊竹影院 | 五十路japanese55丰满 | www一级片 | 久久久久久无码精品人妻一区二区 | 豆花免费跳转入口官网 | 色综合久久天天综合网 | 韩国三级hd中文字幕叫床浴室 | 五月天伊人网 | 日本黄色高清 | 娇妻之欲海泛舟无弹窗笔趣阁 | 麻豆av电影在线观看 | 国产理论片在线观看 | 亚洲av成人精品一区二区三区在线播放 | 久热精品在线观看视频 | 成人欧美一区二区三区黑人一 | 性网爆门事件集合av | 成年人免费在线 | 一级片www| 久久国产视频精品 | 青春草久久 | 亚洲美女免费视频 | 久久9966 | 久久精品国产亚洲AV熟女 | 高清免费毛片 | 人与动物黄色片 | 欧美男女交配视频 | 亚洲一二三 | 精品久久精品 | 亚洲欧美国产精品专区久久 | 人妖和人妖互交性xxxx视频 | 成熟的女同志hd | 国产精品jizz在线观看无码 | 亚洲午夜一区二区三区 | 一区二区三区四区在线 | 欧美日韩国产片 | 国产国语亲子伦亲子 | 麻豆网站在线免费观看 | 久久人精品 | 久久成人网18网站 | 亚洲狠狠爱 | 视频一区二区三区在线观看 | 欧美a在线看 | 777在线视频 | 成人性生交生交视频 | 日日夜夜干 | 国产成人精品二区三区亚瑟 | 红猫大本营在线观看的 | 精品久久久久久无码人妻 | 91精品国产乱码久久久久久久久 | 久久a久久| 好吊妞在线 | 欧美性生交xxxxxdddd | 日韩三级在线观看 | 可以免费看的av网站 | 久久嫩草 | 懂色av蜜臀av粉嫩av喷吹 | 欧美高h视频 | 蜜桃视频免费网站 | 激情成人综合网 | 亚洲精品久久久久久动漫器材一区 | 四虎永久免费观看 | 黄色性视频网站 | 午夜免费福利在线观看 | 先锋影音中文字幕 | 日韩在线网 | 男女做那个视频 | 高h乱l高辣h文短篇h | 日韩一级免费看 | 欧美 日韩 国产 成人 在线 91 | 1000部啪啪未满十八勿入超污 | 在线激情| 日韩电影网站 | 成人免费黄色片 | 国产一区二区免费在线观看 | 99视频| 欧美天堂| 网站av| 穿扒开跪着折磨屁股视频 | 观看av在线| 四虎免费在线观看 | 黑人一级视频 | 痴汉电车在线播放 | 花房姑娘免费观看全集 | 在线一区观看 | 97超碰人人干| 日本美女一区二区三区 | 狠狠狠狠狠干 | 一区二区在线视频播放 | 午夜精品久久久久久久第一页按摩 | 性色国产成人久久久精品 | 污视频网址在线观看 | 国产精品二区三区 | avxx| 日韩成人精品在线观看 | 人妻无码中文字幕免费视频蜜桃 | 人妻少妇精品一区二区三区 | 亚洲欧美一区二区三区久久 | 色偷偷网站 | 中文字幕在线成人 | 男人天堂视频在线观看 | 免费av网址大全 | 九色国产 | 污视频大全 | 久久免费成人 | 91黄色短视频 | 天天做天天爱天天爽综合网 | 精品96久久久久久中文字幕无 | 无人在线观看高清视频 | 男人天堂一区二区 | 日本少妇久久 | 黑人专干日本人xxxx | 人妻精品一区一区三区蜜桃91 | 先锋影音av在线资源 | 蜜臀尤物一区二区三区直播 | 免费看的毛片 | 日韩午夜片| 中文字幕在线网站 | 国产一区二区三区视频在线 | 成人片在线免费看 | √资源天堂中文在线 | 亚洲高清成人 | aaaa免费视频 | 看一级黄色 | 中文字幕一区二区人妻电影丶 | 久久久久久久蜜桃 | 成人综合精品 | 欧美丰满美乳xxⅹ高潮www | 极品白嫩丰满美女无套 | 天堂av2014 | 激情欧美一区二区三区 | 国产福利免费观看 | 乱码一区二区三区 | 国产91沙发系列 | 国产手机av在线 | 欧美色图13p | 张柏芝亚洲一区二区三区 | 绿帽在线 | 性感美女在线观看 | 超碰在线观看99 | 少妇黄色片 | 亚洲第一页av | 草草影院第一页yycc.com | 亚洲av成人无码久久精品 | 最新在线黄色网址 | 嫩草影院在线观看视频 | 操操操网站 | 欧美丰满美乳xxx高潮www | 天天夜夜草 | 98精品视频 | 日本免费不卡视频 | 亚洲激情自拍 | 国产中文字幕在线视频 | 男女在楼梯上高潮做啪啪 | 3级av| 久久精品国产亚洲av香蕉 | 国产又黄又猛又粗又爽 | 日韩一二三四五区 | 精品久久久久一区二区国产 | 18无套直看片红桃 | 亚洲精品第二页 | 亚洲 欧美 精品 | 免费69视频| 亚洲欧美精品一区二区三区 | 成年人在线视频 | 国产91在线播放九色 | 亚洲va天堂va欧美ⅴa在线 | 午夜性影院| 涩av| 韩国伦理片免费看 | 黑人性生活视频 | 秋霞成人 | 亚洲精品综合在线 | 99在线精品视频 | 综综综综合网 | 日本网站黄色 | 天堂资源在线 | 97网站 | 欧美999| 国产1区二区| 一区免费视频 | 亚洲逼图| www.在线视频| 最近高清中文在线字幕在线观看 | 欧美一区二区视频在线 | 五月婷婷丁香网 | 国产免费黄色片 | 午夜精品久久久久久久第一页按摩 | 欧美成人精品欧美一级私黄 | 黄网在线免费观看 | 男人添女人下部高潮全视频 | 欧美日韩成人精品 | 在线视频观看免费 | av青青草 | 丝袜老师办公室里做好紧好爽 | 欧美精品一区二区性色a+v | 快播91| 亚洲精品中文字幕乱码三区91 | 亚洲色图25p | 免费男女视频 | 日本一区二区在线视频 | 国产精品白丝喷水在线观看 | 久久人人爽爽 | 亚洲男人的天堂网 | 不卡av免费 | 欧美日韩二三区 | 99re最新网址| 姑娘第5集在线观看免费 | av.www| 伊人伊色| 性欧美欧美巨大69 | 中文字幕免费在线 | www.黄色片.com| 欧美黄色一区二区三区 | 久久久久久久网 | 免费观看的毛片 | 警察高h荡肉呻吟男男 | 日本高清二区 | 久久丫精品国产亚洲av不卡 | 又黄又湿的网站 | 性a视频| 封神榜二在线高清免费观看 | 国产伦精品一区二区三区视频黑人 | 中文字幕一区二区三区手机版 | 日本xxxx在线观看 | 激情五月深爱五月 | 亚洲天堂av中文字幕 | 国产a∨精品一区二区三区仙踪林 | 午夜在线网站 | 欧美视频日韩视频 | 欧美日韩影院 | 精品国产一区二区三区av性色 | 成人在线免费观看视频 | 国产精品理论在线观看 | 成人性做爰片免费视频 | 美女又爽又黄免费视频 | 日本久久久久久 | 亚洲成年人网 | 国内免费精品视频 | 欧美怡红院视频一区二区三区 | 超碰午夜| 中文字幕人妻一区二区三区在线视频 | 欧美精品二区三区 | 狠狠伊人| 国产欧美在线观看 | 日韩丰满少妇 | 色网网站 | 久一在线视频 | 97免费超碰 | 岛国大片在线观看 | 久久丝袜视频 | 国产高清在线精品 | 男女一级黄色 | 久久久久网站 | 日本性欧美 | 第一次破处视频 | 国产精品一区电影 | 亚洲国产精品成人 | 在线播放不卡 | 丰满人妻一区二区三区53号 | 国产精品无码一区二区桃花视频 | 免费观看成人av | 肉性天堂| 成人av电影免费观看 | 国产精品一品二区三区的使用体验 | 蜜臀久久99精品久久久久宅男 | 久久2019| 鲁一鲁av | 韩日a级片| 天天综合网久久综合网 | 成年人免费网站在线观看 | 国产精品免费av一区二区 | 成人午夜在线观看 | 精品国产99 | 免费在线观看黄网站 | av动漫网站 | 国产人与禽zoz0性伦 | 超碰在线免费 | 大尺度做爰呻吟舌吻网站 | 午夜高清视频 | 苍井空亚洲精品aa片在线播放 | 熟女丝袜一区 | 亚洲精品天堂网 | 欧美一级淫片007 | av黄色在线观看 | ass亚洲熟妇毛耸耸pics | 少妇性xxxxxxxxx色武功 | 亚洲网站在线观看 | 午夜久久久久久久久久 | 亚洲国产成人一区二区 | 欧洲美熟女乱又伦 | 久久国产精品一区 | 麻豆国产一区二区三区 | 性猛交xxxx乱大交孕妇印度 | 亚洲综合欧美 | 色综合色综合色综合 | 69激情网 | 精品午夜视频 | 久久av无码精品人妻系列试探 | 日韩免费高清视频网站 | 成人综合av| 欧洲av一区二区 | 特级黄色大片 | www.猫咪av.com | 久久久1 | 日韩在线观看中文字幕 | 久久久夜色精品亚洲 | 涩涩涩涩涩涩涩涩涩 | 国产日 | 婷婷国产 | 在线看污片 | 亚洲国产视频在线观看 | 国产片91| 久久国产精品系列 | 日本国产在线 | 男操女视频网站 | 日韩久久综合 | 天堂伊人网 | 四虎黄网 | 美妇av| 91老师国产黑色丝袜在线 | 国产精品成人免费一区二区视频 | 玩偶姐姐在线看 | 古装做爰无遮挡三级 | 波多野结衣有码 | 国产精品久久久久久久成人午夜 | 免费成人深夜小野草 | 91一起草| 国产男女精品 | 国产免费一区二区三区免费视频 | 欧美 日本 国产 | 少妇全黄性生交片 | 爱爱的网站 | 国产精品v欧美精品v日韩精品 | 日韩女女同性aa女同 | 国产黑丝精品 | 麻豆免费观看视频 | 成人午夜精品 | a级片久久| 中文字幕精品一区二区三区精品 | av综合一区 | 中文字幕第八页 | 亚洲精品一区二区三区四区五区 | 日本大乳美女 | av有码在线观看 | 在办公室被c到呻吟的动态图 | 国产精品久久在线观看 | 日韩av网站在线观看 | 久久久久亚洲av无码a片 | 欧美极品少妇 | 日韩在线视频免费观看 | 亚洲区一区二区三区 | 尤物久久 | 日本熟妇一区二区三区 | 欧美做爰全过程免费看 | 欧美亚洲大片 | 天天综合永久入口 | 国产福利在线导航 | 中文字幕永久在线视频 | 日韩精品一区二区三区四区五区 | 13日本xxxxxⅹxxx20| 美女被啪羞羞粉色视频 | 天天爽夜夜爽夜夜爽 | 一区二区三区四区不卡 | 国产夫妻视频 | 日本黄色录相 | 九九精品在线播放 | av电影一区二区 | 久久精品影视 | 日本黄色免费 | 少妇一级淫片免费看 | 91精品区 | 人人舔人人爽 | 国产一区2区 | 亚洲女人天堂色在线7777 | 黑森林av凹凸导航 | 日韩在线播放一区二区 | 凹凸精品熟女在线观看 | 在线观看的免费 | 在线观看免费高清在线观看 | 人人色视频 | 亚洲熟女乱综合一区二区三区 | 成人免费无码大片a毛片 | 国产熟妇一区二区三区四区 | 内射无码专区久久亚洲 | 9l视频自拍蝌蚪9l视频成人 | 中文字幕av免费 | 免费不卡视频 | 伊人天天综合 | 国产精品xxxx喷水欧美 | 永久免费在线观看视频 | 羞羞漫画在线 | 人人舔 | 丰满人妻一区二区三区免费视频棣 | 国产女人高潮的av毛片 | 亚洲精品成人久久 | 国产女主播喷水视频在线观看 | 美日韩精品 | 日韩在线网 | 欧美人妻日韩精品 | 网红av在线 | 日韩性网 | 午夜电影在线播放 | 国产精品二区三区 | 香蕉黄视频 | 中文字幕日本一区 | 天天爽夜夜爽夜夜爽 | 欧美日韩tv | 91黄视频在线观看 | 黄色一级视频免费 | www.男人天堂.com | 黄色大片日本 | 天堂网在线最新版www中文网 | 国产精品久久久久久妇女6080 | 亚洲色图另类图片 | 国产精品不卡一区 | 国内成人av | 波多野结衣简介 | 国产精品久久久久久久久借妻 | 日韩精品免费一区二区三区四区 | 亚洲少妇色 | 欧美性区 | 超碰国产在线观看 | 1024精品一区二区三区日韩 | 嫩草一二三 | 天天弄| 欧美黑人一区二区 | 欧美人与动物xxxx | 精品国产污污免费网站入口 | 这里只有精品在线观看 | 日本v片 | 精品一区二区精品 | 精品欧美黑人一区二区三区 | 天堂国产在线 | 校园春色亚洲色图 | 在线观看福利视频 | 精品视频在线免费 | 国产免费一区 | 亚色中文字幕 | 午夜羞羞羞 | 日本欧美国产 | 国产天堂在线观看 | 黄色一区二区三区 | 俺来也av | 特黄一级大片 | 欧美另类天堂 | 日韩av三级在线观看 | 偷看洗澡一二三区美女 | 欧美 日韩 国产 成人 在线观看 | 在线观看色 | 操碰视频| 国产国产国产 | av无码av天天av天天爽 | 欧美激情在线播放 | 日韩欧美中文字幕一区二区 | 香蕉视频官方网站 | 精品欧美乱码久久久久久1区2区 | 亚洲精品传媒 | 天堂素人约啪 | 人人舔人人爽 | 欧美三级免费观看 | 亚洲天堂影视 | 婷婷综合社区 | 美女二区 | 六月丁香久久 | 91极品身材尤物theporn | 一级黄色淫片 | 蜜桃视频在线播放 | 18精品爽国产白嫩精品 | 手机看片国产1024 | 91呦呦 | 欧美怡红院视频 | 成人免费看片载 | 欧美91| 欧美色精品 | 草久视频在线观看 | av久草| 精品国产午夜福利 | 挪威xxxx性hd极品 | 中文字幕一区二区三区人妻 | 国产精品999久久久 午夜天堂影院 | 欧美第一页 | 日韩久久一区二区三区 | 区一区二区三 | 国产成人自拍视频在线 | 男女毛片视频 | 夜夜爽爽| 88国产精品视频一区二区三区 | 九九热精品视频 | 亚洲成人网在线播放 | 中文在线资源天堂 | 色噜噜在线 | 森泽佳奈作品在线观看 | 短视频在线观看 | 综合网在线视频 | 美女涩涩网站 | 国产精品二区视频 | 久久久国产打桩机 | 成人免费版欧美州 | 综合网久久| 手机看片一区 | xx69欧美 | 日本成人免费网站 | 日韩三级在线免费观看 | 国产欧美一区二区精品忘忧草 | 日韩理论在线观看 | 西西人体44www大胆无码 | 天堂影院av| 太久av| 日韩一级免费看 | wwwxxx色 | 亚洲美女偷拍 | 男人天堂最新网址 | 亚洲精品传媒 | 国产精品无码无卡无需播放器 | 亚洲九九视频 | 福利视频免费看 | 亚洲伊人精品 | 久久影视精品 | 亚洲人在线视频 | 欧美精品1区 | 中文字幕在线国产 | 爱操在线| 久久视频在线 | 夜夜嗨av禁果av粉嫩avhd | 亚洲深夜福利 | 天天激情综合 | 三级黄视频 | 四川丰满妇女毛片四川话 | 日本在线不卡一区 | 女同调教视频 | 午夜写真片福利电影网 | 亚洲天堂aaa | 欧美日韩国产一级 | 网站国产| 99久久婷婷国产一区二区三区 | a在线v| 亚洲国产精品久久久久 | 午夜久久久久久久久久久 | 亚洲精品www久久久久久广东 | 黄色在线观看视频网站 | 综合激情网站 | 中文字幕天堂在线 | 国产a不卡 | 国产一区在线观看免费 | 成人免费网址 | 人妻一区二区三区四区 | 日韩精品视频观看 | 中文字幕日韩在线观看 | 亚洲天堂成人 | 午夜精品久久久久久久 | 国产高清免费 | 黄网在线 | 成人福利av| 日韩视频一二三 | 一卡二卡在线视频 | 在线观看网页视频 | 国产丰满果冻videossex | 亚洲综合图色 | 人人艹在线 | 日本高清视频在线播放 | 青青草视频免费看 | 精品人妻无码一区二区性色 | 国产高清免费 | 亚洲欧洲一区二区三区 | 精品一区二区精品 | 女久久| 欧美日韩亚洲综合 | 国产精品一区二区免费看 | 日本一区二区在线免费观看 | 精品人妻一区二区三区三区四区 | 你懂的成人 | jizz成人 | 国产成人精品视频 | 99久久久无码国产精品免费 | 久久综合色网 | 国产毛片一区二区三区 | 欧美爱爱网站 | 草草在线观看 | 国产成人精品久久久 | 亚洲精品久久久久avwww潮水 | 日韩三级一区 | www.国产毛片 | 色片免费看 | 综合久久伊人 | 午夜网址 | 中文在线不卡 | 亚洲欧美一区二区三区 | 青青在线精品 | 一个人看的www片免费高清中文 | 99在线观看 | 精品在线免费观看 | 亚洲一线在线观看 | 日本丰满少妇裸体自慰 | 四虎永久在线视频 | wwwxxxx日本| 女同性做爰三级 | 黄色大片视频 | japanesexxxx日本妞 | 视频一区二区三区在线 | 99视频国产精品免费观看a | 久久国产露脸精品国产 | av五十路| 日韩午夜三级 | 日韩欧美中文字幕在线观看 | 欧美日韩va| 无码人妻aⅴ一区二区三区玉蒲团 | 天堂中文在线观看视频 | 日韩人妻无码精品综合区 | 久久综合狠狠综合久久综合88 | 成年人视频免费在线观看 | 国产精品一区二区久久国产 | 免费成人在线看 | 大吊av| 成人午夜av | 久久五月婷 | 他揉捏她两乳不停呻吟动态图 | 一区二区三区 中文字幕 | 色综合久久久无码中文字幕波多 | xxxx久久| 免费毛片视频网站 | 久久久久一区二区三区四区 | 男女做爰猛烈刺激 | 免费成人毛片 | 亚洲成年人网 | www.日本高清 | 在线免费观看日韩 | 久久亚洲精少妇毛片午夜无码 | 久久久久久久999 | 日本japanese极品少妇 | 女女百合高h喷汁呻吟玩具 国产精品无码乱伦 | 99re这里只有精品在线 | 精品少妇人妻一区二区黑料社区 | a级片在线播放 | 午夜一二三 | 国产情侣酒店自拍 | 激情av网| 亚洲欧洲日韩在线 | 国色天香网站 | av国产一区 | 久久免费看片 | 亚洲免费观看视频 | 双性高h1v1| 调教在线观看 | 成人a网 | 91麻豆产精品久久久久久夏晴子 | 日本黄色片在线播放 | 91福利在线播放 | 日韩高清一区 | 国产成人在线免费 | 93久久精品日日躁夜夜躁欧美 | 日本免费网址 | 亚洲欧美影院 | 久久久久久久久久久久久久久久久久久 | 成年人看的毛片 | 亚洲成人三区 | 韩国av一区二区三区 | 丰满熟妇乱又伦 | 国产成人精品亚洲 | 欧美高清性xxxx | 午夜窝窝| 日韩av不卡在线播放 | 麻豆激情视频 | 国产熟妇另类久久久久 | av片亚洲| 蜜桃在线一区二区 | 欧美黑人一级爽快片淫片高清 | 看片一区二区 | www.国产三级 | 欧洲一区在线观看 | 97超级碰碰碰 | 深爱开心激情网 | 麻豆精品一区 | 抖音视频在线观看 | 免费在线观看亚洲 | 做视频 | 懂色av中文一区二区三区天美 | 国产精品传媒 | 另类欧美亚洲 | 成人午夜免费视频 | 毛片看看| 夏目彩春娇喘呻吟高潮迭起 | 波多野结衣之双调教hd | 日日骚av | 后入内射欧美99二区视频 | 婷婷在线视频观看 | 亚洲成人精品av | 午夜精品久久久久久久久久 | 国产精品视频a | 日本午夜网站 | av电影在线播放 | 日韩不卡毛片 | 国产少女免费观看高清 | 久久二 | 久福利 | 97视频国产 | 一级做a爰片毛片 | 国产精品日日摸天天碰 | 夜夜se | 快色在线观看 | 中文字幕+乱码+中文 | 欧美 日韩 国产 精品 | 黄色录像三级 | 色av综合网 | 国内精品久久久久久 | 日韩毛片在线观看 | 杂技xxx裸体xxxx欧美 | 日韩一级高清 | 国产黄在线免费观看 | 又污又黄的视频 | 欧美自拍视频在线观看 | 嫩草研究院在线观看 | 97视频人人 | 久久久视频在线 | 亚洲一区二区三区四区av | 天天爱天天干天天操 | 18禁一区二区 | av网址在线 | 日韩一级高清 | 亚洲一区二区三区在线免费观看 | 亚洲人人夜夜澡人人爽 | 性做久久 | 激情五月综合色婷婷一区二区 | 动漫一区二区三区 | 国产成人综合亚洲 | 久久女人天堂 | 欧美性受黑人性爽 | 爆操少妇| 久久激情五月 | 亚洲av无码片一区二区三区 | 伊人亚洲综合 | 人人看人人模 | 欧美有码在线观看 | 在线a免费| 欲乱美女 | 蜜桃视频中文字幕 | 成年人福利 | 欧美激情一区二区三区 | 色视频在线看 |